
User
Manual

BASIC Module
Series B
(Cat. No. 1771-DB)

Allen-Bradley

Because of the variety of uses for the products described in this
publication, those responsible for the application and use of this control
equipment must satisfy themselves that all necessary steps have been taken
to assure that each application and use meets all performance and safety
requirements, including any applicable laws, regulations, codes and
standards.

The illustrations, charts, sample programs and layout examples shown in
this guide are intended solely for purposes of example. Since there are
many variables and requirements associated with any particular
installation, Allen-Bradley does not assume responsibility or liability
(to include intellectual property liability) for actual use based upon the
examples shown in this publication.

Allen-Bradley publication SGI-1.1, General Information Safety Guidelines
for Solid-State Control (available from your local Allen-Bradley office),
describes some important differences between solid-state equipment and
electro-mechanical devices that should be taken into consideration when
applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or
in part, without written permission of Allen-Bradley Company, Inc., is
prohibited.

Throughout this manual we use notes to make you aware of safety
considerations:

ATTENTION: Identifies information about practices or
circumstances that can lead to personal injury or death, property
damage or economic loss.

Attention statements help you to:

 identify a hazard
 avoid the hazard
 recognize the consequences

Important: Identifies information that is critical for successful application
and understanding of the product.

Important User Information

Preface A

SOC-1

Summary of Changes

Read this preface if you are replacing a 1771-DB, Series A module with a
1771-DB, Series B module or are using the BASIC module for the first
time. This preface discusses:

 compatibility of the 1771-DB, Series B BASIC module with the
1771-DB, Series A and with the 1746-BAS BASIC modules

 changes to this manual since the last printing

The Series B BASIC module is fully compatible with the Series A BASIC
module. You can run the same BASIC program you ran on the Series A on
the Series B module. In addition the Series B has these features.

Series B Features Description See

EEPROM programming
support

two sockets for memory modules: one for EEPROM and the other for EPROM Chapter 3

Additional RAM memory 24K bytes of RAM (an increase from 13K bytes)

Five new troubleshooting LEDs LEDs now indicate when PRT1 and PRT2 are either transmitting or receiving Appendix C

Two fully functional serial ports ports PRT1 and PRT2 can be configured independently for RS-232, RS-422, or RS-485;
on PRT2, you do not need to jumper pins 4 and 5 together to print

Chapter 2

Error–trapping support ONERR statement traps overflow, underflow and divide-by-zero errors

expanded error support for non-hardware errors undefined in the ONERR statement

Page 11–23

CALL 38, page 12–36

DH-485 network support DH-485 port that you can use as a network port or a programming port Chapter 2

DF1 protocol support for
remote communication

configure port PRT2 for DF1 protocol in either full- or half-duplex modes;
with DF1 protocol you can communicate with external devices using a phone line, radio
link, or dial-up modem

Chapter 2

Operate in 8-point or 16-point
modes

in 8-point mode, the module uses 8 bits in both the input and output image tables for
block transfer
in 16-point mode the module also allows you to examine bits 10 – 17 for communication
port status

Chapters 1 and 5

Turbo speed for faster program
execution

the module operates up to four times faster
run the module at the same speed as Series A for slower applications

Reset switch support hard reset switch initiates a full reset

Enhanced serial port
statements and modifiers

enhanced serial port statements (EOF, INPS, INPL) and port statement modifiers (# and
@) aid developing programs for serial communications

Chapter 9

PLC-5 floating point number
support

supports PLC-5 floating point numbers; Series A did not Chapter 8

What’s in This Preface?

1771-DB Series A and
Series B Compatibility

Preface A
Summary of Changes

SOC-2

EEPROM Programming Support

The Series B module has two sockets for memory modules: one for
EEPROM and the other for EPROM. Program and erase EEPROM
memory modules with the Series B module. You no longer have to use
CALLs 8 and 9 to burn your EEPROM.

Also, you can read and run the EPROM memory module (8K, 16K, and
32K) you programmed with your Series A module on the Series B.
However, you cannot program an EPROM on the Series B.

See Chapter 3 for more information.

Additional RAM Memory

The Series B module has increased RAM to 24K bytes; Series A had 13K.

Five New LED Indicators

The Series B module has increased the number of troubleshooting LEDs
from 5 to 10. The LEDs now indicate when PRT1 and PRT2 are either
transmitting or receiving. The ACTIVE light now flashes when you are in
Command mode and remains on when you are in Run mode. Plus, you
now have two user-defined LED indicators.

See Appendix C for more information.

Two Fully Functional Serial Ports

Ports PRT1 and PRT2 can be configured independently for RS-232,
RS-422, or RS-485. For Series B, you do not need to jumper pins 4 and 5
together on PRT2 for printing.

Software handshaking is enabled as a default on Series B, but not Series A.

See Chapter 2 for more information.

Chapter

Chapter

Chapter

Preface A
Summary of Changes

SOC-3

Error-Trapping Support

The ONERR statement (page 11 -23) traps overflow, underflow, and
divide-by-zero errors in the Series B module. Also, the Series B offers
expanded error (CALL 38, page 12 -36) support for non-hardware errors
undefined in the ONERR statement.

DH-485 Network Support

The Series B module has a DH485 port that you can use as a network port
or a programming port.

See Chapter 2 for more information.

DF1 Protocol Support for Remote Communication

You can configure port PRT2 for DF1 protocol in either full- or
half-duplex mode. With the DF1 protocol you can communicate with
external devices using, for example, a phone line, radio link, or dial-up
modem.

See Chapter 2 for more information.

BASIC Module Operates in 8-Point or 16-Point Mode

The BASIC module can operate in 8-point or 16-point backplane modes.
In 8-point mode, the BASIC module uses 8 bits in both the input and
output image tables for block transfer. In 16-point mode the BASIC
module also allows you to examine bits 10 – 17 for communication port
status.

See Chapters 1 and 5 for more information.

Chapter

Chapter

Chapter

Preface A
Summary of Changes

SOC-4

Turbo Speed Allows Faster Program Execution

The BASIC module operates up to four times faster than before.
With a C toolkit and C compiler available from one of our Pyramid
Solutions Program partners, you can run C programs on the BASIC
module even faster. See your Allen-Bradley representative for more
details on the C toolkit. You can also run the BASIC module at the same
speed as the Series A module for applications that cannot be run at a faster
speed.

With the BASIC Development Software (1747-PBASE) you can shorten
program development time. This powerful programming tool provides a
high level BASIC programming language, powerful debugger, ASCII
terminal emulator, and a thorough Help system to streamline BASIC
module programming and troubleshooting.

Reset Switch Support

The BASIC module has a hard reset switch located behind the module
ejector tab. When this switch is pressed, the BASIC module initiates a full
reset. The BASIC module reacts to this reset the same as it does when you
turn on power to your I/O chassis backplane.

Enhanced Serial Port Statements and Modifiers

With the BASIC module’s new enhanced serial port statements (EOF,
INPS, INPL) and port statement modifiers (# and @) developing programs
for serial communications is easier. When you use the @ operator you
direct communications to port PRT1. When you use the # statement
modifier you direct communications to port PRT2.

See Chapter 9 for more information.

PLC-5 Floating Point Number Support

The Series B module supports PLC-5 floating point numbers; Series A did
not.

See Chapter 8 for more information.

Reset

Chapter

Chapter

Preface A
Summary of Changes

SOC-5

Call Routine Changes and Additions

These calls are new to the Series B, BASIC module:

Statement Page

CALL 0 reset the module 12 -2
CALL 14 SLC 16-bit signed integer to BASIC floating point 12 -8
CALL 15 SLC 16-bit unsigned integer to BASIC floating point 12 -9
CALL 16 enable/disable DF1 packet interrupt 12 -10
CALL 18 re-enable control C break function 12 -11
CALL 19 disable the control C break function 12 -12
CALL 24 BASIC floating point to SLC 16-bit signed integer 12 -15
CALL 25 BASIC floating point to SLC 16-bit binary 12 -16
CALL 29 read/write to PLC/SLC from module internal string 12 -18
CALL 49 read remote DH-485 SLC data file 12 -44
CALL 50 write to remote DH-485 SLC data file 12 -50

CALL 83 display DH485 port setup 13 -11

CALL 84 transfer DH-485 CIF to BASIC input buffer 13 -12
CALL 85 transfer BASIC output buffer to DH-485 CIF file 13 -13
CALL 86 check DH-485 interface remote write status 13 -14
CALL 87 check DH-485 interface file remote read status 13 -15
CALL 88 BASIC floating point to PLC-5 floating point 13 -16
CALL 89 PLC-5 floating point to BASIC floating point 13 -17
CALL 90 read remote DH-485 data file to BASIC input buffer 13 -18
CALL 91 write BASIC output buffer to remote DH-485 data file 13 -22
CALL 92 read remote DH-485 CIF to BASIC input buffer 13 -26
CALL 93 write output buffer to remote DH-485 CIF file 13 -29
CALL 94 display current PRT1 port setup 13 -32

CALL 95 get number of characters in PRT1 buffers 13 -32

CALL 96 clear PRT1 input/output buffers 13 -33
CALL 97 enable PRT2 DTR 13 -33
CALL 98 disable PRT2 DTR 13 -34
CALL 100 download/program assembly language to EEPROM 13 -35

CALL 101 upload user (E)EPROM code to host 13 -35

CALL 103 print PRT1 output buffer and pointer 13 -36

CALL 104 print PRT1 input buffer and pointer 13 -37

CALL 105 reset PRT1 to default settings 13 -37
CALL 108 enable DF1 driver communications 13 -38
CALL 112 user LED control 13 -47
CALL 113 disable DF1 driver communications 13 -47
CALL 114 transmit DF1 packet 13 -48

CALL 115 check DF1 status 13 -49

CALL 116 call user defined assembly language routine 13 -50

CALL 117 get DF1 packet length 13 -51

CALL 118 PLC/SLC unsolicited writes 13 -52

CALL 120 clear BASIC module input and output buffers 13 -57

CALL 122 read remote DF1 PLC data file 13 -58

CALL 123 write to remote DF1 PLC data file 13 -66

Preface A
Summary of Changes

SOC-6

The definitions of these calls have changed:

Important: The Series A definitions are not supported in the Series B.

CALL Series A definition Series B definition Page

30 peripheral port support
parameter set:

enables pins 6 and 8

pins 4 and 5 are always enabled

PRT2 port support parameter set:

enables pins 4, 5, 6 and 8

12 -20

32 save program to data recorder① enable/disable processor interrupt 12 -22

33 verify program with data recorder① transfer data from PRT1 or PRT2
to CPU files

12 -23

34 load program from data recorder① transfer data from CPU files to
PRT1 or PRT2

12 -29

38 save labeled program to data
recorder (1770-SB only)①

expanded ONERR 12 -36

39 load labeled program from data
recorder (1770-SB only)①

3.3-Digit Signed, BCD to BASIC
Floating Point

12 -38

① The Series B module does not support the 1770-SA/SB data recorder (cassette recorder).

Important: Because these calls are no longer needed to program PROMs,
the Series B does not support these Series A calls. Note that if you call
one of these calls you do not receive an error message, but return to the
main program without performing a task.

CALL Series A definition

8 disable interrupts

9 enable interrupts

79 blink the active LED by default

See Chapters 12 and 13 for more information on call routines.

The 1771-DB Series B, BASIC module provides 1771 backplane support
instead of SLC backplane support. The data types, commands,
statements and call routines are similar between the two modules.
These calls are different:

This 1771-DB call: Is equivalent to this 1746-BAS call:

32 (enable/disable processor interrupt) 20 and 21

33 (transfer data from PRT1 or PRT2 to CPU files) 22

34 (transfer data from BTW buffer to PRT1 or PRT2) 23

49 (read remote DH-485 SLC data file) 27

50 (write to remote DH-485 SLC data file) 28

Chapter

1771-DB Series B and
1746-BAS Compatibility

Preface A
Summary of Changes

SOC-7

We have corrected these items that appeared in the previous version of this
manual (1771-6.5.113; November 1994). We show these changes with
revision bars:

We changed: On page:

Software handshaking enabled as default on Series B, but not on Series A SOC–2

Catalog number reference from 1746-PBASE to 1747-PBASE SOC–3

Improved organization of jumper setting table 1–6

Catalog number reference from 1770-XY to 1771-XZ 3–8

Highlighted reference to character limit for greater visibility 4–6

Added space in line 5 of code 5–7

Added parentheses to syntax reference 11–20

Added line of code 12–28,
12–33,
12–56

Added I/O argument in code 12–40

Corrected example text in CALL 72 13–4

Changes to the Manual
Since the Last Printing

Preface A
Summary of Changes

SOC-8

Notes:

publication 1771-6.5.113

Preface B

Using-1

Using This Manual

This introduction describes how to properly and efficiently use this
manual.

This introduction tells you:

 the purpose of this manual
 who should use this manual
 how to use this manual
 abbreviations and conventions
 related publications
 Allen-Bradley support

Use this manual as guide for the design, installation, and programming of
the BASIC module (1771-DB, Series B). It describes the procedures for
installing and using this module. As well, the manual provides reference
information for programming the BASIC module.

Use this manual if you are responsible for designing, installing,
programming, or troubleshooting control systems that use the BASIC
module with Allen-Bradley PLC processors.

You should:

 have a basic understanding of PLC products

 understand programmable controllers

 be able to interpret the ladder logic instructions required
to control your application

 be familiar with BASIC programming

Contact your local Allen-Bradley representative for information on
available training courses before using this product if you are not familiar
with the above items.

What’s in This Preface?

Purpose of This Manual

Who Should Use
This Manual

Preface B
Using This Manual

Using-2

This manual is designed so you can follow it to install your hardware and
program your BASIC module.

Troubleshooting

A

1

2

B

C

3

Product Overview

Installing the BASIC Module

Using Communication Ports

Reference

Decimal/Hexadecimal/
Octal/ASCII Conversion

4

Installing and Replacing Components

Programming the BASIC Module

Data Types

Hardware
1

Programming

5

6

Expressions and Operators

Commands

Statements

Using Statements and Calls

Editing and Debugging a BASIC Program

Call Routines (0–68)

Call Routines (69–127)

Programming Block-Transfers

Series A Configuration Plugs D

Quick Reference E

7

8

9

10

11

12

13

How To Use This Manual

Preface B
Using This Manual

Using-3

Throughout this manual, we abbreviate some terms. The terms and
abbreviations listed in this table are specific to this product.

For a complete listing of Allen-Bradley terminology, refer to the
Allen-Bradley Industrial Automation Glossary, (AG-7.1).

Term/Abbreviation Definition

ASCII port port used to connect to foreign devices. You can configure either
PRT1 or PRT2 to be an ASCII port

BASIC the BASIC-52 programming language

BASIC module BASIC Module (catalog number 1771-DB, Series B)

BTR buffer Block Transfer Read buffer

BTW buffer Block Transfer Write buffer

console device the device connected to the BASIC module program port. This device
is used as an interface between the user and the BASIC program

CIF Common Interface File

DF1 protocol use this protocol to communicate with a node. You can configure
PRT2 for DF1 protocol

dimensioned
variable

a variable that includes an expression

DH-485 network communication protocol

EPROM Erasable Programmable Read Only Memory

EEPROM Electrically Erasable Programmable Read Only Memory

input buffer BASIC module input buffer (includes BTR buffer). Ports PRT1 and
PRT2 also have an input (receive) buffer.

memory module BASIC module EPROM (read only), UVPROM (read only), EEPROM,

MTOP system control value that holds the last valid memory address

network port port used to connect to a DH-485 network. You can configure the
DH485 port to be a network port

PBASE BASIC Development Software (catalog number 1747-PBASE)

PLC Programmable Logic Controller

program port port used to program the BASIC module. You can configure either
port PRT1 or port DH485 of the BASIC module as the program port.

output buffer BASIC module output buffer (includes BTW buffer). Ports PRT1 and
PRT2 also have an output (transmit) buffer.

RS-232/423 serial communication interface

RS-422 differential communication interface

RS-485 network communication interface

RAM Random Access Memory

ROM Read Only Memory, refers to the optional memory module memory
space (EEPROM or UVPROM)

SCADA Supervisory Control and Data Acquisition

scalar variable a variable with a single value

SLC 500 SLC 500 fixed and modular controller

UVPROM Ultra Violet Erasable Programmable Read Only Memory (A UVPROM
is a type of EPROM.)

Terms and Abbreviations

Preface B
Using This Manual

Using-4

We use these conventions in this manual:

In this manual, we show: Like this:

prompts and messages Press a function key

literal text that you type RUN

variable text that you type filename

keys that you press
 F3

that there is more information about the topic
in another chapter in this manual

Chapter

that there is more information about the topic
in another manual

helpful information
Tip

Bulleted lists provide information, not procedural steps. Numbered lists
provide sequential steps or hierarchical information.

Publication Publication Number

BASIC Development Software Programming Manual 1746-6.2

Industrial Automation Wiring and Grounding Guidelines 1770-4.1

General Information Safety Guidelines for Solid–State
Controls

SGI-1.1

National Electrical Code Published by the National Fire
Protection Association of Boston, MA.

Allen-Bradley Publication Index SD499

Allen-Bradley Industrial Automation Glossary AG-7.1

DH-485/RS-232C Interface Module User’s Manual 1747-6.12

DF1 Protocol and Command Set Reference Manual 1770-6.5.16

Refer to the Allen-Bradley Publication Index (SD499) for the appropriate
programming and operations manuals for your particular PLC processor.

Conventions

Related Publications

Preface B
Using This Manual

Using-5

To install and program the BASIC module follow the flowchart below.

Do you need
information on

configuring/using
communication

ports?

Start

Complete

1

Installing the
BASIC Module

2

4

Using the
Communication
Ports

Programming the
BASIC Module

Are you installing
 a memory module?

3

Installing
and
Replacing
Components

Yes

No

Yes

Do you need
information on

BASIC programming?

7

Using
BASIC
Statements

8

Data Types

10

Commands

11

Statements

12

Calls 0–68

9

Expressions,
Variables,
and
Operators

13

Calls 69–127

No

Yes

No

5 6
Programming
Block-Transfers Editing &

Debugging
Programs

3

Getting Started

Preface B
Using This Manual

Using-6

Allen-Bradley offers support services worldwide, with over 75
sales/support offices, 512 authorized distributors and 260 authorized
systems integrators located throughout the United States alone. As well,
Allen-Bradley has representatives in every major country in the world.

Local Product Support

Contact your local Allen-Bradley representative for:

 sales and order support
 product technical training
 warranty support
 support service agreements

Technical Product Assistance

If you need to contact Allen-Bradley for technical assistance, please review
the information in the appropriate chapter first. Then call your local
Allen-Bradley representative.

Your Questions or Comments on this Manual

If you find a problem with this manualor have any suggestions on how we
can make this manual more useful to you, please fill out and send us the
enclosed Publication Problem Report.

Allen-Bradley Support

Table of Contents

TOC-1

Chapter 1
What’s in This Chapter? 1-1.
Guard Against Electrostatic Damage 1-1.
Unpack the Module 1-2.
Install Memory Module 1-2.
Configure Jumpers 1-3.
Determine BASIC Module Placement 1-10.
Key Backplane Connector 1-11.
Install Module in I/O Rack 1-12.
Connect Peripheral Devices 1-13.
Power up the Module 1-13.
Reset the Module 1-13.
Read the Indicator Lights 1-14.
What’s Next? 1-14.

Chapter 2
What’s in This Chapter? 2-1.
Communication Ports Overview 2-1.
Communication Modes 2-2.
Handshaking 2-4.
Communication Rates 2-6.
Operating Modes 2-7.
What’s Next? 2-13.

Chapter 3
What’s in This Chapter? 3-1.
Before You Begin 3-1.
Remove the BASIC Module from the I/O Chassis 3-2.
Disassemble the BASIC Module 3-3.
Install Optional Memory Module 3-4.
Install the Battery 3-8.
Reassemble the BASIC Module 3-11.
What’s Next? 3-11.

Chapter 4
What’s in This Chapter? 4-1.
Programming Instructions 4-1.
Create a Program 4-2.
Number Program Lines 4-6.
Enter a Program 4-7.
Run and Stop a Program 4-9.
What’s Next? 4-9.

Installing the BASIC Module

Using the Communication
Ports

Installing and Replacing
Components

Programming the BASIC
Module

Table of Contents

TOC-2

Chapter 5
What’s in This Chapter? 5-1.
BASIC Module Memory Organization 5-1.
Data Tables 5-2.
Block-Transfer Buffers 5-4.
Block-Transfers and the BASIC Module 5-5.
PLC-2 Family Processors Ladder Logic 5-8.
PLC-3 Family Processors Ladder Logic 5-9.
PLC-5 Family Processors Ladder Logic 5-10.
PLC-5/250 Family Processors Ladder Logic 5-12.
What’s Next? 5-12.

Chapter 6
What’s in This Chapter? 6-1.
Edit a Program Line 6-1.
Delete a Program Line 6-3.
Renumber a Program 6-3.
Debug a Program 6-4.
What’s Next? 6-4.

Chapter 7
What’s in This Chapter? 7-1.
Memory and Operation Calls 7-1.
Port Communication Calls 7-2.
Block-Transfer Support Calls 7-3.
Number Conversion Calls 7-4.
Clock/Calendar Calls 7-4.
String Calls 7-5.
DH-485 Communication 7-5.
DF1 Protocol Communication 7-6.
Background Operations 7-6.
Command Line Calls 7-7.
Execution Control and Interrupt Support Calls 7-7.
Input Calls 7-8.
Output Calls 7-9.
Setup Calls 7-9.
Status Calls 7-10.
What’s Next? 7-10.

Chapter 8
What’s in This Chapter? 8-1.
Argument Stack 8-1.
Control Stack 8-1.
String Data Types 8-2.
Numeric Data Types 8-3.
Backplane Conversion Data Types 8-4.
What’s Next? 8-8.

Programming
Block-Transfers

Editing and Debugging a
BASIC Program

Using BASIC Module
Statements

Data Types

Table of Contents

TOC-3

Chapter 9
What’s in This Chapter? 9-1.
Expressions 9-1.
Relational Expressions 9-1.
Constants 9-1.
Variables 9-2.
Order of Operations 9-3.
Arithmetic Operators 9-5.
Bitwise Operators 9-7.
Relational Operators 9-9.
Trigonometric Operators 9-10.
Functional Operators 9-11.
Logarithmic Operators 9-13.
String Operators 9-14.
Special Function Operators 9-17.
What’s Next? 9-20.

Chapter 10
What’s in This Chapter? 10-1.
BRKPNT 10-2.
CONT 10-3.
CTRL-C 10-4.
CTRL-Q 10-5.
CTRL-S 10-6.
EDIT 10-7.
ERASE 10-8.
LIST 10-9.
NEW 10-10.
NULL 10-10.
PROG 10-11.
PROG1 10-12.
PROG2 10-13.
RAM 10-15.
REN 10-16.
ROM 10-17.
RROM 10-18.
RUN 10-19.
SNGLSTP 10-20.
VER 10-21.
XFER 10-21.
Command Line Calls 10-22.
What’s Next? 10-22.

Expressions, Variables and
Operators

Commands

Table of Contents

TOC-4

Chapter 11
What’s in This Chapter? 11-1.
CLEAR 11-2.
CLEARI 11-3.
CLEARS 11-3.
CLOCK0 11-4.
CLOCK1 11-5.
DATA 11-6.
DIM 11-7.
DO-UNTIL 11-8.
DO-WHILE 11-9.
END 11-10.
FOR-TO-(STEP)-NEXT 11-11.
GET 11-12.
GOSUB 11-13.
GOTO 11-14.
IDLE 11-14.
IF-THEN-ELSE 11-15.
INPL 11-16.
INPS 11-16.
INPUT 11-17.
LD@ 11-18.
LET 11-19.
MODE 11-20.
NEXT 11-21.
ONDF1 11-22.
ONERR 11-23.
ON-GOSUB 11-24.
ON-GOTO 11-25.
ONTIME 11-26.
PH0. and PH1. 11-27.
POP 11-28.
PRINT 11-29.
PUSH 11-30.
READ 11-31.
REM 11-32.
RESTORE 11-32.
RETI 11-33.
RETURN 11-34.
ST@ 11-35.
STOP 11-36.
STRING 11-37.
What’s Next? 11-38.

Statements

Table of Contents

TOC-5

Chapter 12
What’s in This Chapter? 12-1.
CALL 0: Reset Module 12-2.
CALL 2: Timed Block- Transfer-Read Buffer 12-2.
CALL 3: Timed Block- Transfer-Write Buffer 12-3.
CALL 4: Set Block- Transfer-Write Length 12-4.
CALL 5: Set Block- Transfer-Read Length 12-4.
CALL 6: Block-Transfer- Write Buffer 12-5.
CALL 7: Block-Transfer- Read Buffer 12-5.
CALL 10: 3-Digit Signed, Fixed Decimal BCD to
 BASIC Floating Point 12-6.
CALL 11: 16-Bit Binary to BASIC Floating Point 12-7.
CALL 12: 4-Digit Signed Octal to BASIC Floating Point 12-7. . .
CALL 13: 6-Digit Signed, Fixed Decimal BCD to

BASIC Floating Point 12-8.
CALL 14: SLC 16-Bit Signed Integer to
 BASIC Floating Point 12-8.
CALL 15: SLC 16-Bit Unsigned Integer to
 BASIC Floating Point 12-9.
CALL 16: Enable/Disable DF1 Packet Interrupt 12-10.
CALL 17: 4-Digit BCD to BASIC Floating Point 12-11.
CALL 18: Re-Enable Control C Break Function 12-11.
CALL 19: Disable the Control C Break Function 12-12.
CALL 20: BASIC Floating Point to
 3-Digit, Signed, Fixed Decimal BCD 12-12.
CALL 21: BASIC Floating Point to 16-Bit Binary 12-13.
CALL 22: BASIC Floating Point to 4-Digit, Signed Octal 12-13. .
CALL 23: BASIC Floating Point to
 6-Digit, Signed, Fixed BCD 12-14.
CALL 24: BASIC Floating Point to
 SLC 16-Bit Signed Integer 12-15.
CALL 25: BASIC Floating-Point to SLC 16-Bit Binary 12-16.
CALL 26: BASIC Floating Point to 3.3-Digit Signed BCD 12-17. .
CALL 27: BASIC Floating Point to 4-Digit BCD 12-17.
CALL 29: Read/Write to a PLC/SLC processor from
 the BASIC Module Internal String 12-18.
CALL 30: PRT2 Port Support Parameter Set 12-20.
CALL 31: Display PRT2 Port Parameters 12-21.
CALL 32: Enable/Disable Processor Interrupt 12-22.
CALL 33: Transfer Data from PRT1 or PRT2 to
 the BTR Buffer 12-23.
CALL 34: Transfer Data from the BTW buffer to
 PRT1 or PRT2 12-29.
CALL 35: Retrieve Numeric Input Character from PRT2 Port 12-34
CALL 36: Get the Number of Characters in
 the PRT2 Port Buffer 12-35.
CALL 37: Clear the PRT2 Port Buffers 12-35.
CALL 38: Expanded ONERR Restart 12-36.

Call Routines 0 - 68

Table of Contents

TOC-6

CALL 39: 3.3-Digit Signed, Fixed Decimal BCD to
BASIC Floating Point 12-38.

CALL 40: Set the Wall Clock Time (Hour, Minute, Second) 12-39.
CALL 41: Set Wall Clock Date (Day, Month, Year) 12-40.
CALL 42: Set Wall Clock Day of Week 12-40.
CALL 43: Retrieve Date/Time String 12-41.
CALL 44: Retrieve Date Numeric (Day, Month, Year) 12-41.
CALL 45: Retrieve Time String 12-42.
CALL 46: Retrieve Time Numeric 12-42.
CALL 47: Retrieve Day of Week String 12-43.
CALL 48: Retrieve Day of Week Numeric 12-43.
CALL 49: Read Remote DH-485 SLC Data File 12-44.
CALL 50: Write to Remote DH-485 SLC Data 12-50.
CALL 52: Retrieve Date String 12-58.
CALL 60: String Repeat 12-59.
CALL 61: String Append (Concatenation) 12-60.
CALL 62: Number to String Conversion 12-61.
CALL 63: String to Number Conversion 12-62.
CALL 64: Find a String in a String 12-63.
CALL 65: Replace a String in a String 12-64.
CALL 66: Insert String in a String 12-65.
CALL 67: Delete String from a String 12-66.
CALL 68: Determine Length of a String 12-67.
What’s Next? 12-67.

Chapter 13
What’s in This Chapter? 13-1.
CALL 70: ROM to RAM Program Transfer 13-2.
CALL 71: ROM/RAM to ROM Program Transfer 13-3.
CALL 72: RAM/ROM Return 13-4.
CALL 73: Battery-Backed RAM Disable 13-5.
CALL 74: Battery-Backed RAM Enable 13-5.
CALL 77: Protected Variable Storage 13-6.
CALL 78: Set Program Port Communication Rate 13-8.
CALL 80: Check Battery Condition 13-9.
CALL 81: User PROM Check and Description 13-10.
CALL 82: Check User Memory Module Map 13-11.
CALL 83: Display DH485 Port Parameters 13-11.
CALL 84: Transfer DH-485 Common Interface File to
 BASIC Input Buffer 13-12.
CALL 85: Transfer BASIC Output Buffer to
 DH-485 Common Interface File 13-13.
CALL 86: Check DH-485 Interface File Remote Write Status 13-14
CALL 87: Check DH-485 Interface File Remote Read Status 13-15
CALL 88: BASIC Floating Point to PLC-5 Floating Point 13-16. . .
CALL 89: PLC-5 Floating Point to BASIC Floating Point 13-17. . .

Call Routines 69-127

Table of Contents

TOC-7

CALL 90: Read Remote DH-485 Data File to
 BASIC Input Buffer 13-18.
CALL 91: Write BASIC Output Buffer to
 Remote DH-485 Data File 13-22.
CALL 92: Read Remote DH-485 Common Interface File to
 BASIC Input Buffer 13-26.
CALL 93: Write Output Buffer to
 Remote DH-485 Common Interface File 13-29.
CALL 94: Display Current PRT1 Port Setup 13-32.
CALL 95: Get Number of Characters in PRT1 Buffers 13-32.
CALL 96: Clear PRT1 Receive/Transmit Buffers 13-33.
CALL 97: Enable Port PRT2 DTR Signal 13-33.
CALL 98: Disable Port PRT2 DTR Signal 13-34.
CALL 99: Reset Print Head Pointer 13-34.
CALL 100: Download and Program Assembly Language Code to
 EEPROM 13-35.
CALL 101: Upload User (E)EPROM Code to Host 13-35.
CALL 103: Print PRT1 Transmit Buffer and Pointer 13-36.
CALL 104: Print PRT1 Receive Buffer and Pointer 13-37.
CALL 105: Reset PRT1 to Default Settings 13-37.
CALL 108: Enable DF1 Driver Communications 13-38.
CALL 109: Print the Argument Stack 13-44.
CALL 110: Print the PRT2 Port Transmit Buffer and Pointer 13-45. .
CALL 111: Print the PRT2 Port Receive Buffer and Pointer 13-46. .
CALL 112: User LED Control 13-47.
CALL 113: Disable DF1 Driver Communications 13-47.
CALL 114: Transmit DF1 Packet 13-48.
CALL 115: Check DF1 Status 13-49.
CALL 116: Call User Defined Assembly Language Routine 13-50. .
CALL 117: Get DF1 Packet Length 13-51.
CALL 118: PLC/SLC Unsolicited Writes 13-52.
CALL 119: Reset the PRT2 Port to Default Settings 13-56.
CALL 120: Clear BASIC Module I/O Buffers 13-57.
CALL 122: Read Remote DF1 PLC Data File 13-58.
CALL 123: Write to Remote DF1 PLC Data File 13-66.

Table of Contents

TOC-8

Appendix A
What’s in This Appendix? A-1.
Features A-1.
Programming Interfaces A-5.
Network Configurations A-7.
Memory Requirements A-10.
Specifications A-11.
Related Products A-13.

Appendix B

Appendix C
����������������������!� �	"���

Interpret the Indicator Lights C-1.

�����
�����������������	 �	"���

�����
�������������	������ ����� �	"���

Appendix D

Appendix E

Product Overview

Conversion Table

Troubleshooting

Series A Configuration
Plugs

Quick Reference

1 Chapter

1 -1

Installing the BASIC Module

This chapter describes: On page:

guard against electrostatic discharge 1 -1

unpack the module 1 -2

calculate power requirements 1 -2

install memory module 1 -2

configure the jumpers 1 -3

determine BASIC module placement 1 -10

key the backplane connector 1 -11

install module in the I/O chassis 1 -12

connect peripheral devices 1 -13

power up the module 1 -13

reset the module 1 -13

read the indicator lights 1 -14

what’s next? 1 -14

To guard against electrostatic discharge damage, we construct, test, and
pack our products in a static-safe environment. We ship products that
require individual protection in bags that are sealed and shielded from
damage. Equipment that is not packed in a static-shielded bag is
adequately protected as long as you keep it assembled.

When you remove a product from a static-shielded bag or disassemble a
product, do it in a static-safe environment. We recommend the 3M Type
8005 Portable Field Service Grounding kit or the equivalent for providing
a static-safe environment.

ATTENTION: To avoid damaging the module with
electrostatic discharge:

 Wear an approved wrist-strap grounding device or touch a
grounded object to discharge yourself before
handling any equipment. (Note that the wrist
strap is not supplied with the module.)

 Do not touch backplane connectors or
 connector pins.

 If you configure or replace internal components,
do not touch other circuit components inside the module.

 When not in use, keep components in a static-shielded bag.

What’s in This Chapter?

Guard Against Electrostatic
Damage

17991

Attach this end
to a good earth
ground.

Chapter
Installing the BASIC Module

1

1 -2

Verify all the items in your package against the packing sheet. If any of
the items are missing or incorrect, contact your local Allen-Bradley sales
office.

BASIC Module
User
Manual

(Cat. No. 1771-DB)

Important: Save packing materials in case you need to return an item for
servicing.

The BASIC module receives its power through the 1771 I/O chassis
backplane from the chassis power supply. The maximum current drawn by
the BASIC module is:

 0.65A – without a device connected to the DH485 port
 0.75A – with a DH-485 Interface/Converter (1747-PIC) connected to

the DH485 port

Add this value to the requirements of all the other modules in your I/O
chassis to prevent overloading the chassis backplane and/or backplane
power supply.

Refer to the documentation accompanying your power supply for
additional information.

Install your optional memory module into the BASIC module before
placing the module into the I/O chassis.

Refer to Chapter 3 “Installing and Replacing Components” for information
on how to install the optional memory module.

Unpack the Module

Calculate Power Requirements

Install Memory Module

Chapter

Chapter
Installing the BASIC Module

1

1 -3

The BASIC module has nine sets of jumpers that you need to set.
For future reference, place a ✔ next to the jumper setting you choose in the
“Your Selection” column of the tables to follow.

Jumper Description Page

JW1 watchdog timer configuration 1 -4

JW2 memory module configuration 1 -4

JW3 CPU speed select 1 -5

JW4 operating mode 1 -6

JW5 backplane configuration 1 -7

JW6 PRT2 communication rate select 1 -8

JW7 battery configuration 1 -9

JW8 PRT1 configuration 1 -9

JW9 PRT2 configuration 1 -9

JW1

JW2
JW3
JW4
JW5

JW6

JW7

JW8

JW9

ATTENTION: Do not expose the BASIC module to surfaces or
other areas that may typically hold an electrostatic charge.
Electrostatic charges can alter or destroy memory and degrade
or destroy the sensitive electronic components.

Configure the Jumpers

Chapter
Installing the BASIC Module

1

1 -4

Set Watchdog Timer Enable Jumper (JW1)

Use JW1 to enable the watchdog timer. Unless you are using assembly
language code that you programmed for your Series A module, you should
enable this jumper.

To: Set jumper : ✔ your selection:

enable the watchdog timer factory
setting

disable the watchdog timer

Set Memory Module Configuration Jumper (JW2)

Use JW2 to configure your non-volatile memory. Jumper JW2 redirects
the BASIC module circuitry for the different memory modules. If you are
not using a memory module, this jumper is not applicable. The BASIC
module runs properly with the jumper in either position.

If you have this PROM : Set jumper: ✔ your selection:

8K EEPROM

32K EEPROM

8K EPROM

32K EPROM

Refer to Chapter 3 for more information on memory modules.

ATTENTION: Other jumper settings for JW2 are invalid and
may cause damage to the BASIC module.

Chapter

Chapter
Installing the BASIC Module

1

1 -5

 Set CPU Speed Select Jumper (JW3)

Use JW3 to select the operating speed of your BASIC module processor.
Unless you are using a memory module that is slower than 90 ns, set this
jumper to turbo to obtain optimum performance. Memory modules that
are slower than 90 ns are too slow to run in turbo; you must set the jumper
to normal. Refer to Chapter 3 for more information on memory modules.

For this CPU speed: Set jumper: ✔ your selection:

normal
(operating speed of Series A) factory

setting

turbo
(operating speed approx.
4 times speed of Series A)

Chapter

Chapter
Installing the BASIC Module

1

1 -6

Set Operating Mode Jumper (JW4)

Use JW4 to configure your communication ports as a program port, ASCII
port, network port, or DF1 protocol. Also configure your power on
operating condition. Refer to Chapter 2 for more information regarding the
operation mode.

If PRT1 is: and PRT2 is: and DH485 is: and action at power
up is:

Set jumper: ✔ your selection:

ASCII port② ASCII port② program port②④ executing program①

program port② ASCII port② network port② executing program①

in Command mode factory setting

DF1 protocol② disabled executing program①

① If you previously executed a PROG2 (page 10 -13).
② Mode settings of these ports determined by information you saved with a PROG1 (page 10 -12), PROG2, or MODE (page 11 -20).
③ Operating with default communication settings (1200, n, 8, 1, s). You may want to use this mode for troubleshooting purposes.
④ You must use PBASE software (1747-PBASE) if using the DH-485 port as the program port.

Chapter

Chapter
Installing the BASIC Module

1

1 -7

Set Backplane Configuration (JW5)

Use JW5 to set the BASIC module backplane configuration. The BASIC
module can perform both block and discrete transfers. With JW5 set to
8-point mode, the BASIC module uses 8 bits in both the input and output
image table for block transfer. When you have JW5 (page 1 -7)
configured for 16-point mode, the firmware also allows you to
examine/use bits 10–17 for status of the communication ports.

Important: When the BASIC module is in 16-point mode you must
perform all block-transfers synchronously with a PLC-5 processor.
Asynchronous block transfers do not work with this configuration and
cause the backplane circuit within the module to lock up. The BASIC
module ships with JW5 configured for 8-point mode (Series A
compatible). Unless you are using calls 32, 33, 34, 49, 50, 118, 122, or
123 (see Chapters 12 and 13) you should be in 8-point mode.

Important: You cannot use 2-slot chassis addressing if this jumper is set
for 16-point mode. See page 1 -10 for information regarding the backplane
configuration and addressing.

Input image bits Output image bits Read block words Write block words Jumper setting ✔ your selection:

8 8 64 max 64 max factory setting

(Series A setting)

16 16 64 max 64 max ①

① 2-slot chassis addressing not allowed. Block transfers must be synchronous.

Refer to Chapter 5 for more information regarding the backplane mode.
Chapter

Chapter
Installing the BASIC Module

1

1 -8

Set PRT2 Communication Rate Select Jumper (JW6)

Use JW6 to set the communication rate for PRT2 at power-up.
Set the communication rate according to your application.

Important: You can also select the communication rate for PRT2 within
your program. The settings you select with PROG1 (page 10 -12) and
PROG2 (page 10 -13) override the jumper setting until the module is
powered down. The settings you select with MODE (page 11 -20)
override both the jumper and the PROG1 and PROG2 settings until the
module is powered down. If you use PROG1, PROG2, or MODE with the
“E” option storage to save the port settings in the user EEPROM, the unit
then powers up with the stored configuration.

To set the communication rate for: Set jumper: ✔ your selection:

300 bit/s

600 bit/s

1200 bit/s

factory
setting

2400 bit/s

4800 bit/s

9600 bit/s

19.2k bit/s

Refer to Chapter 2 for more information regarding communication rates.
Chapter

Chapter
Installing the BASIC Module

1

1 -9

Set Battery Enable Jumper (JW7)

Use JW7 to enable the battery. To conserve the battery, your module is
shipped with the battery disabled. When the BASIC module is in use, you
should enable the battery. If you do not enable the battery, your program is
not backed up if a power failure occurs.

To: Set jumper: ✔ your selection:

enable the battery

disable the battery factory
setting

Set PRT1 and PRT2 Configuration Jumpers (JW8 and JW9)

Use JW8 to configure the communication mode for the PRT1 port.
Use JW9 to configure the communication mode for the PRT2 port. Set
your jumpers to the correct communication based on the device you want
to connect to the BASIC module.

For this communication: Set jumper: ✔ your selection:

RS485

RS422

RS232
factory
setting

Refer to Chapter 2 for more information regarding communication
settings.

Chapter

Chapter
Installing the BASIC Module

1

1 -10

You install the BASIC module in a 1771-I/O chassis. You can place your
module in any slot of the I/O chassis except for the extreme left slot
(his slot is reserved for processors or adapter modules). We recommend
that you remember these points:

 When selecting slots for modules, always try to group modules to
minimize adverse effects from electrical noise and radiated heat.

 Group analog and low-voltage dc modules away from ac modules or
high-voltage dc modules to minimize electrical noise interference.

Important: Certain processors restrict the placement of block-transfer
output modules. Refer to the user manual for your particular processor for
more information.

Refer to this table to determine where the BASIC module fits into your
module group and address scheme. For more information on jumper JW5,
see Set Backplane Configuration on page 1 -7.

If using this chassis addressing: If JW5 is set to 8-pt. mode: If JW5 is set to 16-pt. mode:

2-slot place the BASIC module in any
module group with any 8-bit discrete
or block transfer module

not permitted

1-slot place the BASIC module in any
module group with any 8-bit, 16-bit,
discrete or block transfer module

place the BASIC module in any
module group with any 8-bit, 16-bit
discrete or block transfer module

1/2-slot no restrictions no restrictions

Determine BASIC Module
Placement

Chapter
Installing the BASIC Module

1

1 -11

Use the plastic keying clips shipped with each I/O chassis to key the I/O
slot to accept only a BASIC module.

The BASIC module is slotted in two places on the rear edge of the circuit
board. The position of the keys on the backplane connector must
correspond to these slots to allow insertion of the module.

Snap the keys onto the upper backplane connectors between 8 and 10 and
between 32 and 34. (Same as Series A)

I/O chassis

Keying Clips

ATTENTION: Insert or remove
keying bands with your fingers.

Keying Positions
Between 8 and 10
Between 32 and 34

20315

Upper
Connector

You can change the position of these keys if subsequent system design and
rewiring makes insertion of a different type of module necessary.

ATTENTION: Observe these precautions when
inserting or removing keying clips:

 Insert or remove keying clips with your fingers.
 Make sure that keying placement is correct.

Incorrect keying or the use of a tool can result in damage to the
backplane connector and possible system faults.

Key the Backplane Connector

Chapter
Installing the BASIC Module

1

1 -12

You are now ready to install the module into the I/O chassis.

ATTENTION: Disconnect and lockout all power from the
programmable controller and system power supplies before
installing modules to avoid injury to personnel and damage to
equipment.

1. Turn off power to the I/O chassis.

2. Use the card guides on the top and bottom of the slot to place the
BASIC module into position.

Important: Apply firm even pressure on the module to seat it into its
backplane connector.

3. Secure the module depending on the of I/O chassis you have:

1771-A1B, -A2B, -A3B, -A3B1, -A4B I/O chassis

locking tab

card guides

BASIC module

Snap the chassis latch over the top of the module to
secure it.

Swing the chassis locking bar down into
place to secure the modules. Make sure
the locking pins engage.

1771-A1B, -A2B, -A3B1, -A4B Series B I/O chassis
BASIC module

19809

card guides

locking bar
locking bar pin

3a. 3b.

Install the Module into the
1771 I/O Chassis

Chapter
Installing the BASIC Module

1

1 -13

Now that you have installed your BASIC module into the I/O rack,
you need to connect your external devices to the communication ports.

See Chapter 2 for cable pin out information.

20376–M

Apply power to your I/O chassis backplane. At power up, the top six
LEDs are on. They go off one at a time as each part of the module self-test
successfully passes. If a fault occurs at power up, the LEDs give an
indication of the portion of the test that failed. Depending on how you set
jumper JW4 (page 1 -6) and if you’ve executed a PROG2 (page 10 -13),
the BASIC module powers up either executing a program or in Command
mode.

Although not required during initial power up of the module, the BASIC
module has a hard reset switch located behind the module ejector tab.
When this switch is pressed (you may need to use a pointed instrument to
press it), the BASIC module initiates a full reset. The BASIC module
reacts to this reset the same as it does when you turn on power to your I/O
chassis backplane.

Reset

Connect Peripheral Devices

Chapter

Power up the Module

Reset the Module

Chapter
Installing the BASIC Module

1

1 -14

The BASIC module has 10 indicator LEDs:

This LED: Indicates:

ACTIVE the module mode and whether the BASIC module is receiving
power from the backplane

FLT whether a system problem was detected during background
diagnostics

DH485 whether port DH485 on the BASIC module is active for
communication

BTLO whether the voltage of the battery that backs up RAM is low

LED1 User definable. LED activated through the user program.

LED2 User definable. LED activated through the user program.

PT1X whether port PRT1 on the BASIC module is transmitting signals.

PT2X whether port PRT2 on the BASIC module is transmitting signals

PT1R whether port PRT1 on the BASIC module is receiving signals

PT2R whether port PRT2 on the BASIC module is receiving signals

Refer to Appendix C for more information on troubleshooting.

Using the
Communication
Ports

2 � Overview
� Communication Modes
� Hardware Handshaking
� Communication Rates
� Operating Modes

Read the Indicator Lights

CAppendix

What’s Next?

2 Chapter

2 -1

Using the Communication Ports

This chapter describes: On page:

communication ports overview 2 -1

communication modes 2 -2

handshaking 2 -4

communication rates 2 -6

operating modes 2 -7

what’s next? 2 -13

The BASIC module has three communication ports: DH485, PRT2, and
PRT1. Through the configuration you select, you can designate at least
one of these ports to function as a program port, ASCII port, network port,
or DF1 protocol port.

DH485

PRT2

PRT1

What’s in This Chapter?

Communication Ports
Overview

Chapter
Using the Communication Ports

2

2 -2

PRT1 and PRT2 Port

You can configure ports PRT1 and PRT2 for these communication modes:

 RS-232C – communicate with a RS-232 device or an unterminated
RS-423 device within 50 ft.

 RS-422 – point to point and multidrop for RXD/TXD connections

 RS-485 – multidrop supported for RXD/TXD connections

The communication mode you choose depends on the device you are
connecting to the BASIC module. Refer to the documentation
accompanying the device. JW8 sets the communication mode for port
PRT1 (page 1 -9) and JW9 sets (page 1 -9) the communication mode for
port PRT2 .

PRT1 and PRT2 Pinout Connections
PRT1 and PRT2 have a DB25 female connector. Here is the pinout for the
connectors:

Pin RS-232 RS-422 RS-485

1 chassis/shield chassis/shield chassis/shield

2 TXD N/A② N/A②

3 RXD N/A② N/A②

4 RTS N/A② N/A②

5 CTS N/A② N/A②

6 DSR N/A② N/A②

7 common common common

8 DCD N/A② N/A②

9 common common common

10 common common common

14 N/A① TXD TXD/RXD

16 N/A① RXD N/A②

18 N/A① RXD’ N/A②

20 DTR N/A② N/A②

25 N/A① TXD’ TXD’/RXD’
① These pins are not a No Connection (N/C). In RS-232 mode, the RS-422 and RS-485
load is still present and should not be connected to any device in this mode.
② In RS-422 and RS-485 modes, these pins are still connected to their RS-232 drivers
and receivers. Do not use these pins in either RS-422 or RS-485 mode.

Important: Pins 11, 12, 13, 15, 17, 19, 21, 22, 23 and 24 are a No Connection (N/C)

PRT1 and PRT2 are electrically isolated to 500V dc.

Communication Modes

20376–M

Chapter
Using the Communication Ports

2

2 -3

PRT1 and PRT2 Transmit and Receive Buffers
Ports PRT1 and PRT2 each have a 256-character receive (input) buffer and
a 256-character transmit (output) buffer. Data in these buffers are
monitored by circular queues. If a queue detects that a buffer is full (i.e.,
the buffer has 256 characters waiting to be serviced), and handshaking is
enabled (software or hardware), then the queue does not allow new
characters to enter the buffer until existing characters have been serviced
and room is available for the new characters.

DH485 Port

The DH485 port uses the DH-485 communication mode to communicate
with SLC processors. The DH485 port has an RJ-45 connector. Use the
standard Allen-Bradley cables (cat. no. 1747-C10,1747-C11, 1747-C20)
for all DH-485 interconnects.

The DH485 port is not electrically isolated.

20376–M

Chapter
Using the Communication Ports

2

2 -4

The BASIC module support both hardware and software handshaking.
You turn hardware and software handshaking on and off through the
MODE statement (page 11 -20).

Software Handshaking

The BASIC module uses these rules when software handshaking is
enabled:

 When the BASIC module receives an XOFF from the external device, it
is recognized immediately and the BASIC module stops sending
characters from the transmit buffer to the UART. However, if there are
any characters already in the UART, these characters are sent to the
external device. The BASIC module continues sending new characters
to the transmit buffer (if PRINT statements are executed). If the
transmit buffer becomes full (i.e., 256 characters waiting to be
transmitted before it receives an XON), then BASIC pauses (while
executing the PRINT statement) until space is available in the transmit
buffer.

 The BASIC module constantly monitors the number of characters in its
receive buffers. If the receive buffer accumulates 192 characters before
any are serviced by the BASIC program, it sends an XOFF to the
external device. The safety margin of 64 characters in the buffer
ensures the BASIC module can accommodate additional characters in
case the external device does not acknowledge the XOFF immediately
and continues to transmit. When characters are serviced by the BASIC
program and the receive buffer contains less than 128 characters, the
BASIC module sends an XON to the external device to allow new
characters to be received.

Important: The BASIC module automatically initiates XON/OFF codes
when software handshaking is enabled. Do not attempt to generate these
codes from the BASIC program or you could cause the serial ports to
appear to be “locked-up.”

Important: If you are receiving non-ASCII data from an external device,
we recommend that you do not use software handshaking. If software
handshaking is enabled and the external device happens to transmit data
that is equivalent to the code for XOFF, the BASIC module stops
transmitting the characters and appears to be “locked-up.”

Handshaking

Chapter
Using the Communication Ports

2

2 -5

Hardware Handshaking

The BASIC module uses these rules when hardware handshaking is
enabled. The BASIC module:

 does not transmit until CTS, DCD, and DSR become active

 examines DSR and DCD following the receipt of a character. If the
DSR and DCD are active, the character is placed in the input queue.
If DSR or DCD is inactive, the character is assumed to be noise and is
discarded.

Important: You need to know whether the device connecting to the
BASIC module has a DTE or DCE interface.

The BASIC module serial ports are configured as 25-pin Data Terminal
Equipment (DTE), as are most terminals or computer ports.

DTE 25 pinout Signal description Signal from DTE perspective DTE 9 pinout Signal description

2 TXD–Transmitted Data Output 3

3 RXD–Received Data Input 2

4 RTS–Request to Send Output 7

5 CTS–Clear to Send Input 8

6 DSR–Data Set Ready Input 6

7 Com–Signal Common Shared 5

8 DCD–Data Carrier Detect Input 1 CD–Carrier Detect

20 DTR–Data Terminal Ready Output 4

22 NC–No Connection
(for BASIC module only)

Input 9 RI–Ring Indicator (BASIC
module does not support)

Devices such as modems are Data Communication Equipment (DCE).
Pinouts on these terminals are defined for ease of interfacing with DTE
equipment.

DCE 25 pinout Signal description Signal from DC perspective DCE 9 pinout

2 TXD–Transmitted Data Input 3

3 RXD–Received Data Output 2

4 RTS–Request to Send Input 7

5 CTS–Clear to Send Output 8

6 DSR–Data Set Ready Output 6

7 Com–Signal Common Shared 5

8 CD–Carrier Detect Output 1

20 DTR–Data Terminal Ready Input 4

22 RI–Ring Indicator Output 9

Important: All signal directions that are listed in the previous two tables
are valid. For example, TXD, Transmitted Data, is a DTE output but is
also a DCE input. The signal description is the same for both the DTE and
DCE but the direction of the signal (perspective) has changed based on
whether you have a DTE or DCE device.

Chapter
Using the Communication Ports

2

2 -6

You can operate PRT1 and PRT2 ports full-duplex and DH485 port
half-duplex at 300, 600, 1200, 2400, 4800, 9600 or 19200 bit/s. You can
set the communication rates for PRT1, PRT2, and DH485 ports using the
MODE (page 11 -20) statement and store the settings using the PROG1
(page 10 -12) and PROG2 (page 10 -13) commands. You can set the
communication rate for the program port with CALL 78 (page 13 -8).

Important: Jumper JW6 sets the communication rate on the hardware for
PRT2 (page 1 -8). You can also select the communication rate for PRT2
within your program. The settings you select before using PROG1 or
PROG2 override the jumper setting until the module is powered down.
The settings you select with MODE overrides both the jumper and the
PROG1 and PROG2 settings until the module is powered down. If you
use the PROG1, PROG2 or MODE to store the port settings in the user
EEPROM, the unit then powers up with stored configuration.

Important: The BASIC module cannot transmit and receive continuous
streams of data at 19.2k bit/s on all three ports at the same time.

Here is the communication rates vs distance:

Communication Maximum distance allowed in meters (feet) for:
Rate (bit/s) RS-232 RS-423 RS-422 RS-485

300 15 (50) 15 (50) 1230 (4000) 1230 (4000)

600 15 (50) 15 (50) 1230 (4000) 1230 (4000)

1200 15 (50) 15 (50) 1230 (4000) 1230 (4000)

4800 15 (50) 15 (50) 1230 (4000) 1230 (4000)

9600 15 (50) 15 (50) 1230 (4000) 1230 (4000)

19200 15 (50) 15 (50) 1230 (4000) 1230 (4000)

Important: Use the RS-232 jumper settings for JW8 or JW9 when
communicating in RS-423 mode (page 1 -9). RS-423 devices should be
unterminated and cable length should be a maximum of 50 ft.

Communication Rates

Chapter
Using the Communication Ports

2

2 -7

Depending on how you set jumper JW4 (see Set Operating Mode,
page 1 -6), you can configure:

Port PRT1 as:

 ASCII port
 program port

Port PRT2 as:

 ASCII port
 DF1 protocol port

Port DH485 as:

 program port
 network port
 disabled

Operating Modes

Chapter
Using the Communication Ports

2

2 -8

ASCII Port

If you set JW4 to one of the configurations shown at the left, PRT1 and/or
PRT2 are ASCII ports (asynchronous serial communication channels)
compatible with RS-232C, RS-422, RS-485 interfaces. When you
configure PRT1 and PRT2 as ASCII ports, you use jumpers JW8 and JW9
(page 1 -9) to select an electrical interface. The RS-485 electrical
interface is not the same as the DH-485 network (the electrical interface is
similar but the DH-485 network has embedded firmware to control
communication). Through the ASCII ports you can interface with:

 printers
 terminals
 commercial asynchronous modems

To interface with these devices, use either bi-directional XON and XOFF
software handshaking or RTS/CTS, DTR, DSR, DCD hardware
handshaking.

Use the MODE command (page 11 -20) to change ASCII port
configuration. You can also use CALL 30 (page 12 -20) to change the
ASCII port configuration for PRT2 only.

The ASCII port has these parameters:

Port parameters Selections Default settings

communication rate 300, 600, 1200, 2400, 4800, 9600, 19200 1200

parity none (N), even (E), odd (O) N

number of data bits 7 or 8 8

number of stop bits 1 or 2 1

handshaking no handshaking (N)
software handshaking (S)
hardware handshaking (H)
hardware and software handshaking (B)

S

storage type store information in user ROM and RAM (E)
store information in battery backed RAM (R)

R

When you select 8 bits/character you have full access to all 8 bits of each
character on both input and output data bytes.

JW4 ASCII Port Configurations

PRT1 and PRT2 ASCII

Only PRT2 ASCII

Only PRT2 ASCII

Chapter
Using the Communication Ports

2

2 -9

Program Port

 You can configure either PRT1 or DH485 as your program port.

PRT1 Configured as Program Port
If you set JW4 to one of the configurations shown at the left, PRT1 is the
program port. In this configuration, the serial port on the console device is
connected to port PRT1 on the BASIC module. The console device
communicates with the BASIC module through terminal emulation over an
RS-232 interface.

PLC processor
with BASIC module

Console device

Null modem cable

Important: When using PBASE to interface with the RS-232 port of the
BASIC module, PBASE must be configured for RS-232 communication through
the configuration and terminal selection menus. Refer to the BASIC
Development Software Programming Manual (publication number 1746-6.2).

DH485 Configured as Program Port
If you set JW4 to the configuration shown at the left, port DH485 is the
program port. In this configuration, the serial port on the personal
computer interfaces with port DH485 on the BASIC module through a
1747-PIC Interface/Converter. The 1747-PIC Interface/Converter converts
the RS-232 signals from the personal computer RS-232 serial port to
RS-485 format. When DH485 is the program port you must use PBASE to
program the BASIC module.

Personal computer
with PBASE software

1747-C10 cable

Interface/Converter RS-232 to RS-485 (1747-PIC)

PLC processor
with BASIC
module

Important: You must use PBASE to use the DH485 port as a program
port. Configure PBASE for DH-485 communication through the
configuration and terminal selection menus. Refer to the BASIC
Development Software Programming Manual (publication number
1746-6.2) for additional information.

JW4 PRT1 Program Port Configurations
(See chapter 1 for additional
information on these settings.)

JW4 DH485 Program Port Configuration

Chapter
Using the Communication Ports

2

2 -10

DF1 Protocol

If you set JW4 to the configuration shown at the left, PRT2 port can be
configured via a BASIC program for DF1 protocol. The BASIC module
uses DF1 protocol to communicate with external devices using, for
example, a leased phone line, radio link or dial-up modem.

Important: When DF1 protocol is selected on port PRT2, DH-485
communications are disabled.

PLC
processor
with BASIC
module

Modem

Modem

1747-C11 cable

Link
Coupler
1747-AIC

Link
coupler
1747-AIC

 Console device

DH-485
communication
cable
Belden #9842

Interface/Converter
RS-232 to RS-485
(1747-PIC)

1747-C13 cable

PLC
processor
with BASIC
module

SLC 500
controller
with
1747-KE
module

1747-C10 cable

Important: The 1747-C13 cable acts only as a communication link and
does not carry 24V dc power. The 1747-C10, 1747-C11, 1747-C20 cable
carries 24V dc power from the processor to the link coupler.
(The 1747-C10 cable, 1747-C11 and 1747-C20 cables are
interchangeable.)

Important: If the modems are dial-up, the BASIC program may initiate
dial-up and then switch port PRT2 to DF1 protocol when connection is
made to the 1747-KE or 1770-KF3 DH-485 Communication Interface
Module. JW4 must still be set for DF1 protocol; however, the port is not
active until you enable it with CALL 108 (page 13 -38).

JW4 DF1 Protocol Configuration

Chapter
Using the Communication Ports

2

2 -11

Network Port

If you set JW4 to one of the configurations shown at the left, your BASIC
module can be interfaced with a DH-485 network using a combination of:

 1747-AIC isolated link coupler
 1747-PIC interface/converter
 1784-KR DH-485 interface card
 1770-KF3 DH-485 communication interface module
 1747-KE DH-485/RS–232C communication interface module

The BASIC module and SLC processor CPU act as two separate nodes on
the DH-485 network.

Cable Requirements
Use the 1747-C10 cable, 1747-C11 cable, 1747-C13 cable, or 1747-C20
cable to interface port DH485 of the BASIC module with a 1747-AIC link
coupler. Use the DH-485 communication cable, Belden #9842, to interface
between the link couplers on the DH-485 network.The 1747-C13 cable
acts only as a communication link and does not carry 24V dc power.
The 24V dc can come from either the processor or an outside power
source. The 1747-C10, 1747-C11, or 1747-C20 cable carries 24V dc
power from the processor to the link coupler.
(The 1747-C10 cable, 1747-C11 cable and 1747-C20 cable are
interchangeable.) A cable connected to the outside power source carries
24V dc from the outside power source to the link coupler.

JW4 DH485 Network Port Configuration
(See chapter 1 for additional
information on these settings.)

Chapter
Using the Communication Ports

2

2 -12

1747-PIC Interface/Converter/1747-AIC Isolated Link Coupler
Use the 1747-PIC interface/converter to convert the RS-232 signals from
the personal computer’s serial port to DH-485 format. This figure shows
the interface/converter integrating a personal computer with the PBASE
software to the BASIC module across a DH-485 network.

The 1747-AIC isolated link coupler allows you to link modules to the
DH-485 network.

PLC
processor
with BASIC
module

1747-C11 cable

1747-C11 cable

Link
coupler
1747-AIC

Link
coupler
1747-AIC

Personal computer with
PBASE software

DH-485
communication
cable
Belden #9842

Interface/Converter
RS-232 to RS-485
(1747-PIC)

SLC 500
controller
with BASIC
module

Important: When using PBASE to interface with the BASIC module
through the 1747–PIC, the BASIC development software must be
configured for DH-485 communication through the configuration and
terminal selection menus. Refer to the BASIC Development Software
Programming Manual (publication number 1746-6.2) for additional
information.

Chapter
Using the Communication Ports

2

2 -13

1747-AIC Link Coupler/1784-KR DH-485 Interface Card
The 1784-KR DH-485 Interface Card enables your personal computer to
communicate across the DH-485 network to the BASIC module without
the interface/converter. This figure shows a DH-485 network
configuration with the 1784-KR DH-485 Interface Card and its host
computer linked with the BASIC module through a link coupler.

PLC processor
with BASIC
module

1747-C11 cable

1747-C11 cable

Link
coupler
1747-AIC

Link
coupler
1747-AIC

Personal computer
 PBASE software

1784-KR DH-485
interface card

DH-485
communication
cable
Belden #9842

SLC 500
controller
with BASIC
module
(1746-BAS)

In this configuration, your personal computer must have the 1784-KR
DH-485 Interface Card installed in one of its expansion slots. The DH-485
data link connector on the 1784-KR card and port DH485 on your BASIC
module are interfaced with the DH-485 network through a 1747-AIC link
coupler.

Installing and
Replacing
Components

3
2

� Remove Module from Chassis
� Disassemble Module
� Install Memory Module
� Replace Battery
� Reassemble Module

What’s Next?

Chapter
Using the Communication Ports

2

2 -14

Notes:

3 Chapter

3 -1

Installing and Replacing Components

Refer to this chapter if you are installing or replacing a memory module or
the battery. If not, go on to Chapter 4, “Programming the BASIC
Module”.

This chapter describes: On page:

before you begin 3 -1

remove the BASIC module from the I/O chassis 3 -2

disassemble the BASIC module 3 -3

install memory module 3 -4

install the battery 3 -8

reassemble the BASIC module 3 -11

what’s next? 3 -11

Before you can install the memory module or battery you must remove the
module from the I/O chassis and disassemble the module. You need these
tools to do this:

 Phillip’s head screwdriver
 flat head screwdriver (for battery)
 chip insertion/extraction tool (for memory modules without a carrier)

ATTENTION: To avoid damaging the module with
electrostatic discharge:

 Wear an approved wrist-strap grounding device or touch a
grounded object to discharge yourself before
handling any equipment. (Note that the wrist
strap is not supplied with the module.)

 Do not touch backplane connectors or
 connector pins.

 If you configure or replace internal components,
do not touch other circuit components inside the module.

 When not in use, keep components in a static-shielded bag.

What’s in This Chapter?

Before You Begin

17991

Attach this end
to a good earth
ground.

Chapter
Installing and Replacing Components

3

3 -2

Before you can add or replace components, you must remove the module
from the I/O chassis. Go to page 3 -3, if you already removed the
BASIC module from the chassis.

ATTENTION: Shut off power to the I/O chassis before
removing the BASIC module; otherwise, personal injury or
damage to equipment may result.

To remove the BASIC module from the I/O chassis:

1. Remove power from the I/O chassis containing the BASIC module.

2. Put on the wrist strap and ground it to the I/O chassis.

3. Disconnect all cables from the BASIC module.

4. Lift locking tabs and slide the BASIC module out of the I/O chassis.

19466

C ard guides

Lock ing tab

BASIC module

Remove the BASIC Module
from the I/O Chassis

Chapter
Installing and Replacing Components

3

3 -3

Before you can install the optional memory module or battery, you have to
disassemble the BASIC module.

ATTENTION: Electrostatic discharge can damage integrated
circuits or semiconductors in the module of you touch
backplane connector pins. Use a static-safe workstation, if
available.

1. Remove the cover from the right side of the BASIC module.

20369–M

Important: Be careful not
to lose the washers.

2. Remove the board from the main cover.

20370–M

Disassemble the BASIC
Module

Chapter
Installing and Replacing Components

3

3 -4

The BASIC module supports these Allen-Bradley Memory Modules:

 8K EEPROM (Cat. Nos. 1771-DBMEM1 or 1747-M1)
 32K EEPROM (Cat. Nos. 1771-DBMEM2 or 1747-M2)
 8K EPROM (Cat. No. 1747-M3)
 32K EPROM (Cat. No. 1747-M4, PN 940654-02, or PN 940654-03)

Also, you can use any JEDEC standard 8K, 16K, or 32K EPROM or 8K
or 32K EEPROM with speeds faster than 150 ns (for example 90 ns).
When using turbo mode, the memory modules must have speeds of 90 ns
or faster (for example 50 ns).

You can store up to 255 programs in memory modules. The programs are
stored in sequence in the PROM for retrieval and execution. The BASIC
module generates all of the timing signals needed to program most
EEPROM optional memory modules. However, EPROM optional
memory modules must be programmed by an external PROM programmer.
Jumper JW2 is used to redirect the module circuitry for the different
memory module options (see Chapter 1). These commands allow you to
generate and manipulate the PROM file: RAM, ROM, XFER, PROG,
PROG1, PROG2 (Chapter 10).

The data format of the BASIC module EEPROM and EPROM optional
memory modules is hexadecimal. PBASE software provides a hex file
transfer option that can be used to upload and download hex files to the
BASIC module EEPROM or EPROM. The primary use of hex file
transfers is to transfer the data from an EEPROM in one BASIC module to
an EEPROM in another BASIC module. Hex file transfers can also be
used to copy the data of an EEPROM to a EPROM via a PROM
programmer.

Refer to the BASIC Development Software Programming Manual
(publication number 1746-6.2) for additional information on hex file
transfers.

Important: The BASIC module can program and erase EEPROM memory
modules. However, it cannot program or erase EPROM memory modules.

Install Optional Memory
Module

Chapter

Chapter
Installing and Replacing Components

3

3 -5

To install your optional memory module:

Refer to this table when installing your memory module.

Catalog number Size Carrier Socket JW2: PROM circuitry JW3: CPU speed

1771-DBMEM1

1771-DBMEM2

8K byte EEPROM

32K byte EEPROM

yes

yes

SKT1

SKT1 top
either
turbo shown for
optimum performance

1747-M1

1747-M2

1747-M3

8K byte EEPROM

32K byte EEPROM

8K byte EPROM

yes

yes

yes

SKT1

SKT1

SKT1

top normal

1747-M4 32K byte EPROM yes SKT1
bottom normal

PN 940654-02

PN 940654-03

32K byte EPROM

32K byte EPROM

no

no

SKT2

SKT2 bottom normal

1. Unpack the memory module and check the contents of the package.
If any items are missing, contact your local Allen-Bradley office.

2. Remove the BASIC module from the I/O chassis. If you need further
instructions to complete this step see page 3 -2.

3. Disassemble the BASIC module to gain access to the memory
module sockets. If you need further instructions to complete this
step, see page 3 -3.

ATTENTION: Electrostatic discharge can damage integrated
circuits or semiconductors in the module of you touch
backplane connector pins. Wear a wrist-strap grounding device
and use a static-safe workstation, if available.

Chapter
Installing and Replacing Components

3

3 -6

4. Place the board on a flat surface.

20371–M

SKT1
(PROMs with Carriers)

SKT2
(PROMs without Carriers)

5. Insert the memory module into the appropriate socket.

SKT1
(PROMs with Carriers)

20372–M

Chapter
Installing and Replacing Components

3

3 -7

Use a chip insertion tool with memory modules that have no carrier.

SKT2
(PROMs without Carriers)

20373–M

Important: Make sure you line up the
index mark on the PROM with the index
mark on the socket.

Index Mark

Important: Make sure that none of
the pins on the PROM are bent and
that all the pins are aligned in the
socket correctly.

6. Reassemble the BASIC module. If you need further instructions to
complete this step, see page 3 -11.

7. Set jumper JW2 to configure the BASIC module for the circuitry of
your memory module. If you have an Allen-Bradley memory module
refer to the table on page 3 -5. If not, refer to the Memory Module
Configuration Jumper on page 1 -4.

8. Set jumper JW3 (CPU Speed Select Jumper, page 1 -5) to set the
speed of your BASIC module CPU. If you have an Allen-Bradley
memory module refer to the table on page 3 -5. If not set jumper
JW3 according to the speed of your memory module:

Memory speed JW3 setting

150 ns – 91 ns

Normal

90 ns or faster

Turbo

slower than 150 ns not allowed

9. Replace the BASIC module into the I/O chassis. If you need further
instructions to complete this step, see page 1 -12.

Chapter
Installing and Replacing Components

3

3 -8

The battery backs up 24K bytes of user RAM and the clock/calendar.
Drain on the battery should be less than 0.5 mA dc during battery back-up
(no power) and less than 50 uA while the module is powered. Battery life
during no-power conditions is about 2,000 hours. Battery shelf life is
about 20,000 hours.

When the BTLO LED indicator light comes on the battery should maintain
the clock and program data for about three days. We recommend
immediate replacement.

The BASIC module ships with a MAXELL ER3STC battery. You can
replace it with this battery or a Allen-Bradley battery, catalog number
1770-XZ or a Tadiran battery, part number 15-51-03-210-000.

Important: The BASIC module retains the current configuration for 36
minutes after removing the battery. If it takes you longer than 36 minutes
to replace the battery, you lose the program stored in RAM.

ATTENTION: Do not incinerate or dispose lithium batteries in
general trash collection. They may explode or rupture violently.
Check state and local regulations dealing with the disposal of
these materials. You are legally responsible for hazards created
while your battery is being disposed.

Ship or dispose the battery according to the recommended
procedures listed in the disposal section of Guidelines for
Handling Lithium Batteries (publication number AG-5.4).

Use CALL 80 (page 13 -9) to monitor battery status.

Install the Battery

Chapter
Installing and Replacing Components

3

3 -9

To replace the battery:

1. Remove the BASIC module from the I/O chassis. If you need further
instructions to complete this step see page 3 -2.

2. Disassemble the BASIC module. If you need further instructions to
complete this step, see page 3 -3.

ATTENTION: Electrostatic discharge can damage integrated
circuits or semiconductors in the module if you touch backplane
connector pins. Wear a wrist-strap grounding device and use a
static-safe workstation, if available.

3. Remove the battery cover using a small, flat-blade screwdriver.

Screwdriver Slots

Important: Do not bend the
screwdriver too far; otherwise, you
could damage the battery cover.

Chapter
Installing and Replacing Components

3

3 -10

4. Remove the battery and insert a fresh one. Make sure you install the
battery in the correct orientation.

+ –

5. Replace the battery cover.

6. Reassemble the BASIC module. If you need further instructions to
complete this step, see page 3 -11.

7. Make sure jumper JW7 is enabled (page 1 -9).

8. Replace the BASIC module into the I/O chassis. If you need further
instructions to complete this step, see page 1 -12.

The BTLO LED indicator light should go out.

Chapter
Installing and Replacing Components

3

3 -11

After installing the memory module or battery, reassemble the BASIC
module as follows:

1. Insert the board into the main case.

20370–M

2. Replace the right-side cover.

20369–M

Important: Make sure you replace
the washers. Also, do not
over-tighten the screws; otherwise
you can damage the cover.

Programming
the BASIC
Module

4
� Programming Instructions
� Creating a Program
� Numbering Program Lines
� Entering a Program
� Running/Stopping Program

Reassemble the BASIC
Module

What’s Next?

Chapter
Installing and Replacing Components

3

3 -12

Notes:

4 Chapter

4 -1

Programming the BASIC Module

This chapter describes: On page:

programming instructions 4 -1

create a program 4 -2

number program lines 4 -6

enter a program 4 -7

run and stop a program 4 -9

what’s next? 4 -9

BASIC programs are composed of BASIC programming instructions
grouped together. These instructions are a combination of operators,
commands, statements, and system subroutines (CALLs).

Important: The BASIC module operates in two modes: the Command
mode (Program mode) and the Run mode (Interpreter mode). You can
only enter commands when the processor is in the Command mode.

BASIC Operators

BASIC operators are programming instructions that you execute during
Run mode. You typically use these operators to perform a predefined
operation on either variables or constants. Operators require either one or
two operands. Chapter 9 describes operators in detail.

BASIC Commands

BASIC commands are programming instructions that initiate an action
from the BASIC module. You execute commands in Command mode
from the command line. You use these commands to perform some type of
program maintenance. Chapter 10 describes these commands in detail.

What’s in This Chapter?

Programming Instructions

Chapter

Chapter

Chapter
Programming the BASIC Module

4

4 -2

BASIC Statements

BASIC statements are programming instructions that control program flow
or manipulate I/O and memory. Every statement begins with a line
number, followed by a statement body, and terminated with a carriage
return (CR) or a colon (:) in case of multiple statements per line number.
You execute statements automatically within a BASIC program during Run
mode. You can also enter these statements from the command line in
Command mode to test/evaluate the execution of the statement. Chapter
11 describes these statements in detail. Chapter 7 gives you an overview
of how to use the different types of statements.

BASIC Subroutines (CALLs)

BASIC system subroutines (calls) are programming instructions that you
execute within a BASIC program or from the command line. A call is
actually a type of statement. There are 128 calls. These calls perform such
activities as setting the clock/calendar, manipulating strings, processing
block transfers, and converting backplane data. Calls 0–127 are described
in detail in Chapters 12 and 13. Chapter 7 gives you an overview of how
to use the different types of calls.

BASIC module execution is controlled through a BASIC program residing
in RAM or ROM (memory module).

Remember these hints as you are programming:

 Define strings first, unless you are executing a CALL 77 (page 13 -6).
Then, execute CALL 77 first and define your strings immediately after.

 Dimension arrays after defining strings.

 Define most used variables first. Use 0 until you assign real values.

 When doing math, save intermediate values rather than recalculate.

 Place the most used subroutines near the beginning of the program.

 Straight through code executes faster, but uses more memory.

 Put multiple statements on a line after debugging the program.

 Comments use memory space and slow execution time.
After debugging the program save a fully commented copy on disk and
remove comments from the executable program.

Chapter

Chapter

Create a Program

Tip

Chapter
Programming the BASIC Module

4

4 -3

You can create and edit your BASIC program using a personal computer
along with BASIC Development Software (PBASE) or using an ASCII
terminal or a personal computer running an ASCII terminal emulation
software package.

Important: You can also program the BASIC module using the
C programming language. Contact your local Allen-Bradley sales
office for additional information.

ASCII Terminal Emulator

Use an ASCII terminal to enter a BASIC program one line at a time to
your BASIC module through port PRT1 (configured as the program port).
The ASCII terminal connected to the BASIC module must be an industrial
terminal, workstation, or personal computer (without the BASIC
development software) that communicates in alphanumeric mode. An
ASCII terminal can also be used to display charts or graphs generated by
your BASIC program.

In this configuration, you connect the RS-232 port on the back of your
industrial terminal or personal computer to port PRT1 on your BASIC
module. Port PRT1 must be configured as the program port.

PLC processor
with BASIC module

Console device with ASCII
terminal emulation software

Null modem cable

Refer to Chapter 2 for additional information on port configuration.Chapter

Chapter
Programming the BASIC Module

4

4 -4

BASIC Development Software (PBASE)

Use a personal computer with the BASIC Development software (PBASE)
to create a BASIC program that is then downloaded to your BASIC
module. PBASE provides a structured and efficient means of
programming your BASIC module. This software is loaded into a 100%
IBM compatible personal computer. It uses the personal computer to
facilitate editing, compiling (translating), uploading, and downloading
BASIC programs to the BASIC module. You can use PBASE with either
the RS-232 or the DH-485 interface. You must use PBASE software when
the DH485 port is the program port.

RS-232 Interface

In this configuration, you connect the serial port on the personal computer
to port PRT1 on the BASIC module. The personal computer
communicates with the BASIC module through terminal emulation over an
RS-232 interface. Port PRT1 is configured as the program port.

Personal computer
with PBASE software

PLC processor
with BASIC module

Null modem cable

Refer to Chapter 2 for additional information on port configuration.Chapter

Chapter
Programming the BASIC Module

4

4 -5

DH-485 Interface

In this configuration, you interface the serial port on the personal computer
with port DH485 on the BASIC module through a 1747-PIC
Interface/Converter. The 1747-PIC Interface/Converter converts the
RS-232 signals from the personal computer RS-232 serial port to RS-485
format. Port DH485 is configured as the program port.

Personal computer
with PBASE software

1747-C10 cable

Interface/Converter RS-232 to RS-485 (1747-PIC)

PLC processor
with BASIC module

Refer to Chapter 2 for additional information on port configuration.

Important: This chapter focuses on using an ASCII terminal to program
the BASIC module. Refer to the BASIC Development Software
Programming Manual (publication number 1746-6.2) for information on
programming the BASIC module with PBASE.

Chapter

Chapter
Programming the BASIC Module

4

4 -6

BASIC program lines always begin with a line number ranging from 0 to
65535. The line numbers indicate the order in which the program lines are
stored in memory. You also use them as references when branching and
editing. Typically you start numbering BASIC programs with line number
10 and increment by 10. This allows you to add additional lines later as
you work on your program. You can use a line number only once in a
program. Each line can contain no more than 79 characters.

Since the computer runs the statements in numerical order, additional lines
need not appear in consecutive order on the screen. For example, if you
enter line 35 after line 40, the computer still runs line 35 after line 30 and
before line 40. This technique saves you from re-entering an entire
program if you forget to include a line.

Important: If you reuse an existing line number all information you
referenced with original line number is lost. Be careful when entering line
numbers in Command mode, you may accidentally erase program lines.

After the line number, you may have a combination of BASIC statements
(Chapter 11), operators (Chapter 9), or CALLs (Chapters 12 and 13).
Depending on the logic of your program, you may have more than one
statement on a line. If so, you must separate each statement with a
colon (:).

The BASIC line must contain at least one character after the line number,
but no more than 79 characters, including the line number.

Number Program Lines

Chapter

Chapter
Programming the BASIC Module

4

4 -7

To enter a BASIC program using an ASCII terminal follow these steps.

Important: Refer to the BASIC Development Software Programming
Manual (publication number 1746-6.2) for information on entering a
program using PBASE software.

1. Select the program port using jumper JW4 (page 1 -6).

2. Connect the ASCII terminal to the BASIC module program port (see
page 2 -2).

3. Verify that the console device is configured to communicate with the
BASIC module.

4. Apply power to your system.

If a program is not in RAM, this screen appears:

BASIC Module - Catalog Number 1771-DB/B
Firmware Revision: A
Allen-Bradley Company, Copyright 1989, 1990, 1991, 1992, 1993, 1994
All rights reserved

>

Enter a Program

Chapter
Programming the BASIC Module

4

4 -8

If a program is in RAM and you programmed the BASIC module to
execute from RAM, the program starts running on power up.

Type Ctrl + C to stop the program. This screen appears:

.

.

.
STOP - IN LINE XXX
READY
>

Important: The system prompt > indicates that the BASIC module
is now in Command mode.

5. Enter a line of the BASIC program at the system prompt > .

BASIC ignores spaces and automatically inserts them during a LIST
command. You can enter lowercase characters in Command mode.
However, any key words, commands, statements, variable and array
names entered in lowercase change to uppercase when you store the
program in memory.

READY
>10 REM FIRST PROGRAM
>20 PRINT “HELLO WORLD”

6. Press Return to end the program line.

Chapter
Programming the BASIC Module

4

4 -9

Run the Program

To run a BASIC program, type RUN (page 10 -19) at the system prompt [>].

READY
>RUN

HELLO WORLD

READY
>

Stop the Program

To stop a running program, press Ctrl + C .

CALL 19 (page 12 -12) disables Ctrl + C and CALL 18 (page 12 -11)

re-enables Ctrl + C .

Important: If Ctrl + C is disabled, you cannot stop program

execution through a BASIC command. In this case, set jumper JW4
(Chapter 1) of the BASIC module in the factory default position and cycle
power to stop program execution.

Programming
Block-Transfers

5 � BASIC Module Memory Organization
� Data Tables
� Block-Transfer Buffers
� Block-Transfers and the BASIC module
� PLC-2 Family Processors Ladder Logic
� PLC-3 Family Processors Ladder Logic
� PLC-5 Family Processors Ladder Logic

� PLC-5/250 Family Processors Ladder Logic

Run and Stop a Program

What’s Next?

Chapter
Programming the BASIC Module

4

4 -10

Notes:

5 Chapter

5 -1

Programming Block-Transfers

This chapter describes: On page:

BASIC module memory organization 5 -1

data tables 5 -2

block-transfer buffers 5 -4

block-transfers and the BASIC module 5 -5

PLC-2 family processors ladder logic 5 -8

PLC-3 family processors ladder logic 5 -9

PLC-5 family processors ladder logic 5 -10

PLC-5/250 family processors ladder logic 5 -12

what’s next? 5 -12

All data transferred from the PLC to the BASIC module must be routed
through the BASIC module input buffer . The block transfer write buffer
(BTW) is part of the input buffer. This table lists the defined offsets of the
BASIC module input buffer. These offset numbers are used by the various
calls that manipulate the BTW buffer or the DH-485 common interface
file.

Offset Definition

0 reserved

1–64 PLC block transfer write from PLC processor

65–99 reserved

100–139 data transferred from the DH-485 common interface file

All data transferred from the BASIC module to the PLC must be routed
through the BASIC module output buffer. The block transfer read buffer
(BTR) is part of the output buffer. This table lists the defined offsets of the
BASIC module output buffer. These offsets are used by the various calls
that manipulate the BTR buffer or the DH-485 common interface file.

Offset Definition

0 reserved

1–64 block transfer read to PLC processor

65–99 reserved

100–139 data transferred to the DH-485 common interface file

What’s in This Chapter?

BASIC Module Memory
Organization

Chapter
Programming Block-Transfers

5

5 -2

The BASIC module communicates with any PLC processor that has
block-transfer capability. Your ladder logic program and BASIC program
work together to enable proper communications between the BASIC
module and PLC processor. The BASIC module can perform both block
and discrete transfers. Use JW5 (page 1 -7) to set the BASIC module
backplane configuration. With JW5 set to 8-point mode, the BASIC
module uses 8 bits in both the input and output image table for block
transfer. When you have JW5 configured for 16-point mode the firmware
also allows you to examine bits 10–17 for handshaking.

13 000102030405060710111214151617
Handshaking Bits Block Transfer Bits

Upper (10–17)
Used only in 16 point mode

Lower (00–07)
Always used

Output Image Table
Output Image Table Bit Description Used with CALL①

00–07 Do not use–Reserved for Block Transfers –

10 Reserved –

11 PRT1 BTW Req 34 (PRT1)

12 DF1 BTR Req 122

13 PRT2/DF1 BTW Req 34 (PRT2)

123

14 DH-485 READ Req 49

15 DH-485 WRITE Req 50

16 Module Interrupt Req 32

17 Reserved –
① See Chapter 12 and 13 for information on these calls.

Data Tables

Chapter
Programming Block-Transfers

5

5 -3

Input Image Table
Input Image Table Bit Description Used with CALL①

00 Do not use–Reserved –

01 BTW Req 3 and 6

02 BTR Req 2 and 7

03 Do not use–Reserved –

04 DF1 Status BTR Req 123

05–07 Do not use–Reserved –

10 PRT1 BTW Req 33 (PRT1)

11 PRT1 BTW Ack 34 (PRT1)

12 PRT2 BTR Req/ DF1 BTR Ack 33 (PRT2), 122

13 PRT2/DF1 BTW Ack 34 (PRT2), 123

14 DH-485 READ Ack 49

15 DH-485 WRITE Ack 50

16 DH-485 Status BTR Req 50

17 Unsolicited DH-485/DF1 WRITE 118
① See Chapter 12 and 13 for information on these calls.

Important: When the BASIC module is in 16-point mode you must
perform all block-transfers synchronously with a PLC-5 family processor.
Asynchronous block transfers do not work with this configuration and
cause the backplane circuit within the module to lock up. The BASIC
module ships with JW5 configured for 8-point mode (Series A
compatible). Unless you are using calls 32, 33, 34, 49, 50, 118, 122, or
123 (see Chapters 12 and 13) you should be in 8 point mode.

Important: You cannot use 2-slot chassis addressing if JW5 is set for 16
point mode. See page 1 -10 for information regarding the backplane
configuration and addressing.

Chapter

Chapter
Programming Block-Transfers

5

5 -4

Block-Transfer Write Buffer

The BASIC module processor maintains a block-transfer-write (BTW)
buffer containing the values of the last BTW sent by the PLC processor.
Use CALL 4 to set the BTW word length. Transfer data to the BASIC
module’s BTW buffer with CALL 6 or CALL 3.

Block-Transfer Read Buffer

The BASIC module also maintains a block-transfer-read (BTR) buffer that
is the value of the next block, read by the PLC processor. Use CALL 5 to
set the BTR word length. Transfer the data to the BASIC module
processor BTR buffer (for subsequent transfer to the PLC processor) with
CALL 7 or CALL 2. You should complete the building of the read buffer
before initiating its transfer.

Important: Use CALL 4 and CALL 5 once, immediately after power-up if
possible. CALL 4 sets the BTW block length. CALL 5 sets the BTR
block length. Failure to follow these guidelines could cause random
lockup of the BASIC module program.

Block-Transfer Buffers

Chapter
Programming Block-Transfers

5

5 -5

The BASIC module is a bi-directional block-transfer module.
Bi-directional means that the module performs both block-transfer-read
and block-transfer-write operations:

 Use a BTR instruction to transfer data (1 to 64, 16-bit words) from your
module to the PLC processor’s data table.

 Use a BTW instruction to transfer data (1 to 64, 16-bit words) to your
module from the PLC processor’s data table.

The PLC processor sends variable length blocks of data to the module.
You can transfer a maximum of 64 words in and 64 words out per scan.
The module responds with the requested block length of data. The module
has an auxiliary processor dedicated to servicing of the block-transfers to
and from the PLC processor. Use these support routines to provide the
communications link between the PLC processor and BASIC module.

Statement Page

CALL 2 timed-block-transfer-read buffer 12 -2
CALL 3 timed-block-transfer-write buffer 12 -3
CALL 4 set block-transfer-write length 12 -4
CALL 5 set block-transfer-read length 12 -4
CALL 6 block-transfer-write buffer 12 -5
CALL 7 block-transfer-read buffer 12 -5
CALL 120 clear BASIC module input and output buffers 13 -57

Important: Alternate BTR and BTW instructions in ladder logic and
between CALL 7 or CALL 2 and CALL 6 or CALL 3 in your BASIC
program. BTR and BTW instruction enable bits must not be set at the
same time. If you do not, a block-transfer lockup between the PLC
processor and BASIC module may occur.

Block-Transfers and the
BASIC Module

Chapter
Programming Block-Transfers

5

5 -6

Block-Transfer Programming Tips

Remember these block-transfer programming tips:

 Block lengths PUSHed for CALLs 4 and 5 must equal the
corresponding lengths on your BTW/BTR instructions in the PLC
ladder logic.

 If a BTW appears first in your ladder logic, put a CALL 3 or 6 first in
your BASIC program. If a BTR appears first in your ladder logic, put a
CALL 2 or 7 first in your BASIC program.

 If your application requires bi-directional block-transfers, you can use
CALL 6 or 3 and CALL 7 or 2 anywhere in your program at any time
interval, if you:

- Use an equal number of each type.

- Alternate their use (e.g. CALL 6, CALL 7, CALL 6, CALL 7).

 If your application requires a one way block-transfer
(all write-block-transfers or all read-block-transfers),
use only the associated CALLs (4 and 3 or 6; 5 and 2 or 7).

Tip

Chapter
Programming Block-Transfers

5

5 -7

Sample BASIC Block-Transfer Program

This sample program assumes that the application requires a single
block-transfer-read (BTR) and a single block-transfer-write (BTW) to pass
data between the processor and the BASIC module (transfer of 64 words or
less). If the transferred data exceeds 64 words, you must program multiple
file to file moves to move different data sets to and from the block-transfer
files.

The values shown are for demonstration purposes only. Use the program
for all PLC-2, PLC-3, PLC-5 and PLC-5/250 processor ladder logic
programs shown in this chapter.

>5 DIM A(5)

>10 REM SET BTW LENGTH TO 5 WORDS

>20 PUSH 5: CALL 4

>30 REM SET BTR LENGTH TO 5 WORDS

>40 PUSH 5: CALL 5

>50 REM READ THE BTW BUFFER

>60 CALL 6

>70 REM CONVERT DATA FROM 3–DIGIT BCD TO DB FORMAT

>80 FOR I=1 TO 5

>90 PUSH (I): CALL 10: POP A(I)

>95 PRINT A(I),

>100 NEXT I

>110 REM DO A CALCULATION

>120 T=A(1)+A(2)+A(3)+A(4)+A(5):V=T/5

>125 PRINT ”AVE=”, V

>130 REM CONVERT DATA FROM DB FORMAT TO 3–DIGIT BCD

>140 PUSH T: PUSH 1: CALL 20

>150 PUSH V: PUSH 2: CALL 20

>160 REM WRITE TO THE BTR BUFFER

>170 CALL 7

>180 REM CONTINUE TO BLOCK TRANSFER

>190 GOTO 60

>200 END

Important: Use CALL 4 and CALL 5 only once, immediately after
power-up, if possible. Failure to observe this guideline could cause
random BASIC module program lockups.

Chapter
Programming Block-Transfers

5

5 -8

The Mini-PLC-2 (cat. no. 1772-LN3) and PLC 2/20 (cat. no. 1772-LP1,
-LP2) processors use multiple GET instructions to perform block-transfers.
Refer to the processor user’s manual for an explanation of multiple GET
block-transfers.

The first two rungs of the sample program toggle the requests for
block-transfer-writes (BTW) and block-transfer-reads (BTR).
The interlocks shown do not allow a BTR and BTW instruction to enable
at the same time.

In Rung 3 when a BTR is successfully completed, its done bit sets,
enabling the file-to-file move instruction. The file-to-file move instruction
(FFM) moves the BTR data file (File 205–209) into a storage data file
(210–214). This prevents the programmable controller from using invalid
data if a block-transfer communication fault occurs.

Important: Use the first available timer-counter as a data address.

Important: The PLC-2 is in 2-slot chassis addressing.

FILE TO FILE MOVE
COUNTER ADDR:
POSITION:
FILE LENGTH:

0052
001
005

0205 – 0209
0210 – 0214

005

FILE A:

FILE R:
RATE PER SCAN

110

16

010

17

BLOCK XFER WRITE

DATA ADDR:

MODULE ADDR:

BLOCK LENGTH:

FILE:

0030

101

05

0200 – 0204

010

16

110

16

LADDER DIAGRAM DUMP

START

BLOCK XFER READ

DATA ADDR:

MODULE ADDR:

BLOCK LENGTH:

FILE:

0031

101

05

0205 – 0209

010

17

110

17

110

17

010

16

110

17

0052

17

0052

15

1

2

3

END 01295
15044

(EN)

(DN)

(EN)

(DN)

(DN)

(EN)

PLC-2 Family Processors
Ladder Logic

Chapter
Programming Block-Transfers

5

5 -9

You can use this ladder logic program with PLC-3 or PLC-3/10 processors.
This program assumes that your application requires a single BTR and
BTW to pass data between the processor and the BASIC module (transfer
of 64 words or less). If the transferred data exceeds 64 words you must
program multiple file to file moves to move different data sets to and from
the block-transfer files.

Rung one is true only at power-up. It uses status word 3, bit 3 (the ac
power loss bit of the PLC-3) to zero the control file of both the BTR and
BTW. In Rungs 2 and 3, during normal program execution the BTW and
BTR instructions are alternately executed. The done bits of each
instruction enable the next block-transfer instruction. The BTR and BTW
control files must be different for the next block-transfer to occur.
The equal instruction is used at power-up. At power-up the BTR and BTW
control files both equal zero. At power-up the BTW enables and
block-transfers begin.

XOR
A XOR B = R

A : WB001:0030
0000000010000100
B : WB001:0030
0000000010000100
R : WB001:0030
0000000010000100

BTW
BLOCK XFER WRITE
RACK :
GROUP :
MODULE:

002
1

1 = HIGH
FB002:0150

5
FB001:0030

DATA:
LENGTH =
CNTL

XOR
A XOR B = R

A : WB001:0020
0000000000000000
B : WB001:0020
0000000000000000
R : WB001:0020
0000000000000000

S0003

03

WB001:0020

15

EQU
A = B

A : WB001:0030
0000000010000100
B : WB001:0020
0000000000000000

CNTL

02

CNTL

05

CNTL

03

WB001:0030

05

BTR
BLOCK XFER READ
RACK :
GROUP :
MODULE:

002
1

1 = HIGH
FB002:0220

5
FB001:0020

DATA:
LENGTH =
CNTL

CNTL

12

CNTL

15

CNTL

13

RUNG NUMBER RM1

RUNG NUMBER RM2

RUNG NUMBER RM3

1

2

3

(LE)

(DN)

(ER)

(LE)

(DN)

(ER)

PLC-3 Family Processors
Ladder Logic

Chapter
Programming Block-Transfers

5

5 -10

Asynchronous Block Transfer

You can use this ladder logic program with PLC-5 processors for
asynchronous block transfer. This program assumes that your application
requires a single block- transfer-read (BTR) and block-transfer-write
(BTW) to pass data between the processor and the BASIC module (transfer
of 64 words or less). If transferred data exceeds 64 words you must
program multiple file-to-file moves to move different data sets to and from
block-transfer files.

Rungs 1 and 2 execute the BTR and BTW instructions alternately.
When BTR is completed, BTW enables immediately following BTR scan.

Important: Do not select the continuous mode when using bi-directional
block-transfer. Continuous mode does not allow use of the status bits in
the block-transfer instructions.

BTW

BLOCK XFER WRITE

Rack

Group

Module

0

0

0

N10:10

N10:15

5

Control Block

Data file

Length

File 2,

15

Rung 0

15

Continuous N

N10:10 N11:10

BTR

BLOCK XFER READ

Rack

Group

Module

0

0

0

N11:10

N11:15

5

Control Block

Data file

Length

File 2,

15

Rung 1

15

Continuous N

N10:10 N11:10

File 2, Rung 2

[END OF FILE]

1

2

3

15048

(EN)

(DN)

(ER)

(EN)

(DN)

(ER)

PLC-5 Family Processors
Ladder Logic

Chapter
Programming Block-Transfers

5

5 -11

Synchronous Block Transfer

You can use this ladder logic program only with PLC-5 processors to
perform synchronous block transfers. This program assumes that your
application requires a single block-transfer-read (BTR) and
block-transfer-write (BTW) to pass data between the PLC-5 processor and
the BASIC module (transfer of 64 words or less). If transferred data
exceeds 64 words you must program multiple file-to-file moves to move
different data sets to and from block-transfer files.

This example assumes that the BASIC module is in 8 point mode and
resides in group 1, slot 1. Rung 1 is an example of a synchronous
block-transfer-write. When the BASIC module executes a BTW using
CALL 3 or CALL 6, the BASIC module sets bit 01 in the input image
byte. Bit 01 enables the BTW instruction in the ladder logic. When the
block transfer is compete, the BASIC module resets bit 01.

Rung 2 is an example of a synchronous block-transfer-read. When the
BASIC module executes a BTR using CALL 2 or CALL 7, the BASIC
module sets bit 02 in the input image byte. Bit 02 enables the BTR
instruction in the ladder logic. When the block transfer is complete the
BASIC module resets bit 02.

By using this “handshaking” process, the ladder logic enables the block
transfers only when the BASIC module requests them. This process
should help increase the efficiency of the PLC-5 ladder logic programs
when accessing the BASIC module.

BTW

BLOCK TRANSFER WRITE

Rack

Group

Module

0

1

0

N7:15

N7:200

5

Control Block

Data file

Length

01

I:001

Rung 3

[END OF FILE]

(EN)

(DN)

(ER)

NContinuous

Rung 1

BTR

BLOCK TRANSFER READ

Rack

Group

Module

0

1

0

N7:0

N7:300

5

Control Block

Data file

Length

02

I:001

(EN)

(DN)

(ER)

NContinuous

Rung 2

BTW Enable bit

BTR Enable bit

N7:15

15

N7:0

15

Chapter
Programming Block-Transfers

5

5 -12

You can use this ladder logic program with PLC-5/250 Family processors.
This program assumes that your application requires a single
block-transfer-read (BTR) and block-transfer-write (BTW) to pass data
between the processor and the BASIC module (transfer of 64 words or
less). If the transferred data exceeds 64 words you must program multiple
file-to-file moves to move different data sets to and from the
block-transfer files.

The first two rungs of the sample program toggle the requests for
block-transfer-reads (BTR) and block-transfer-writes (BTW). When the
BTW is completed, the BTR enables immediately following the BTW
scan. The interlocks shown do not allow a BTR and BTW instruction to
enable at the same time.

When a BTW is successfully completed, its done bit sets. A COP
instruction can move the BTR data file into a storage file.

DN

EN

DN

/

/ /

BTR

EN

Rung 1 Step 2:0

BR001:0 BW001:0

BLOCK XFER READ
Rack 000
Group 1
Module 0
Control Block BR001:0
Data File 1BTD0:0
BT Length 5
Continuous NO
BT Timeout 4

ER

ER

BTW
BLOCK XFER WRITE
Rack 000
Group 1
Module 0
Control Block BW001:0
Data File 1BDT1:0
BT Length 5
Continuous NO
BT Timeout 4

Rung 1 Step 2:1
BR001:0 BW001:0

Rung 1 Step 2:2

[END OF FILE]

1

2

3

EN EN

EN EN

Editing and
Debugging

6 � Edit a Program Line
� Delete a Program Line
� Renumber a Program
� Debug a Program

PLC-5/250 Family Processors
Ladder Logic

What’s Next?

6 Chapter

 6 -1

Editing and Debugging a BASIC Program

This chapter describes: On page:

edit a program line 6 -1

delete a program line 6 -3

renumber a program 6 -3

debug a program 6 -4

what’s next? 6 -4

When the BASIC module is in Command mode, you can edit the BASIC
program that resides in RAM. Editing a BASIC program is done on a line-
by-line basis. To edit an existing line in the BASIC program, type EDIT

and the line number of the line you want to edit. The ASCII terminal
displays the BASIC program line you specify in the EDIT command
(page 10 -7).

READY
>EDIT 20

20 PRINT “HELLO WORLD”

What’s in This Chapter?

Edit a Program Line

Chapter
Editing and Debugging a BASIC Program

6

 6 -2

You can perform any of these edit operations:

Operation Function Key Strokes

delete use the delete operation to delete the
character at the cursor position

Ctrl + D

exit use the exit operation(s) to exit the
editor with or without saving the
changes

 - exits the editor and

replaces the old line with the edited line

 - exits the editor without

 saving any changes made to the line

Ctrl + Q

Ctrl + C

insert use the insert operation to insert text
at the current cursor position

Important: When you use the insert
operation, all text to the right of the
cursor disappears until you press the
second .

total line length is 79 characters.

Ctrl + A

Important: You must press a second
 to terminate the insert

command

Ctrl + A

Ctrl + A

move use the move operation to provide
right/left cursor control - moves the cursor one

space to the right

 - moves the cursor one space

to the left

Backspace

Space

replace use the replace operation to replace
the character at the current cursor
position

press the key that corresponds to the
character that replaces the character at the
current cursor position

retype use the retype operation to copy the
current line of text and insert it at the
line following the current line.
The cursor moves to the first
character on the new line

Return

Chapter
Editing and Debugging a BASIC Program

6

 6 -3

When the BASIC module is in Command mode, you can delete an existing
line of the BASIC program. To delete an existing line of the BASIC

program, type the line number of the line to delete and press Return .

When the BASIC module is in Command mode, you can renumber the
BASIC program that resides in RAM. To renumber a BASIC program,
enter a REN command (see page10 -16) at the system prompt >.

This command variation: Renumbers the program:

REN Return
from the beginning of the program. New line
numbers begin at 10 and increment by 10.

REN NUM Return
from the beginning of the program. New line
numbers begin at 10 and increment by NUM.

REN NUM1, NUM2 Return
from the beginning of the program. New line
numbers begin with NUM1 and increment by NUM2.

REN NUM1, NUM2, NUM3 Return
starting at NUM2. New line numbers begin with
NUM1 and increment by NUM3.

Important:

 REN command updates the destination of GOSUB, GOTO, ONERR,
ONTIME and ON GOTO statements (Chapter 11).

 If the target line number does not exist, or if there is insufficient
memory to complete the task, no lines are changed and the message
RENUMBER ERROR appears on the console screen.

 Because the REN command uses the same RAM for renumbering as it
does for variable and program storage, available RAM may be
insufficient in large programs. Renumber your program periodically
and in segments during development.

Delete a Program Line

Renumber a Program

Chapter

Chapter
Editing and Debugging a BASIC Program

6

 6 -4

The BRKPNT (page 10 -2) command and SNGLSTP command (page
10 -20), along with the STOP statement (page 11 -36) help you to debug
your program.

Set Break Points

Use the BRKPNT command to set a program break point at the line
number you specify with this command. Program execution stops just
before the line number you specified. If the line number is zero, the break
point is disabled. After the break point is reached, you can examine
variables by using PRINT statements. You can also modify the variables
by assignment statements. Continue from the break point by using the
CONT command (page 10 -3.) Once the break point is reached, it is
disabled. To stop at the same place twice, set the break point twice. The
BRKPNT command works only on programs executing from RAM. It
does not stop a program executing from ROM.

Initiate Single Step Execution

Use the SNGLSTP command to initiate single-step program execution.
If the number you specify with this command is zero, single-step execution
is disabled. If the number is not zero, a break point is set before each line
in the program. Start the program with the RUN command (page 10 -19).
After each stop, type CONT (page 10 -3) to execute the next line.
You can inspect variables or assign variables at each break point.
SNGLSTP works only on programs executing from RAM.
It does not stop a program executing from ROM.

Stop Program Execution at a Specific Point

Use the STOP statement to break program execution at specific points in a
program. After a program is stopped you can display or modify variables.
You can resume program execution with a CONT command (page 10 -3).

Note that the line number printed out after execution of the STOP
statement is the line number following the STOP statement, not the line
number that contains the STOP statement.

Using BASIC
Module
Statements

7

Debug a Program

What’s Next?

7 Chapter

7 -1

Using BASIC Module Statements

This chapter groups the statements and calls required to manipulate the
various hardware parts of the BASIC module. We assume you are familiar
with standard BASIC programming practices. Therefore, standard BASIC
commands and statements are not covered here unless a special
consideration is required for the BASIC module. Some calls perform
multiple operations and are listed in more than one place. Chapter 11
describes the statements in detail and Chapters 12 and 13 describe the calls
in detail.

This chapter describes: On page:

memory and operation calls 7 -1

port communication calls 7 -2

block-transfer support calls 7 -3

number conversion calls 7 -4

clock/calendar calls 7 -4

string calls 7 -5

DH-485 communication 7 -5

DF1 communication 7 -6

background operations 7 -6

command line calls 7 -7

execution control and interrupt support calls 7 -7

input calls 7 -8

output calls 7 -9

setup calls 7 -9

status calls 7 -10

what’s next? 7 -10

Memory Manipulation

Statement Page

CALL 70 ROM to RAM program transfer 13 -2
CALL 71 ROM/RAM to ROM program transfer 13 -3
CALL 72 RAM/ROM return 13 -4
CALL 73 battery-backed RAM disable 13 -5
CALL 74 battery-backed RAM enable 13 -5
CALL 77 protected variable storage 13 -6
CALL 80 check battery condition 13 -9
CALL 81 user PROM check and description 13 -10
CALL 82 check user memory module map 13 -11

What’s in This Chapter?

Chapter

Memory and Operation Calls

Chapter
Using BASIC Module Statements

7

7 -2

Miscellaneous

Statement Page

CALL 18 re-enable control C break function 12 -11
CALL 19 disable the control C break function 12 -12
CALL 32 enable/disable processor interrupt 12 -22
CALL 38 expanded ONERR restart 12 -36

CALL 99 reset print head pointer 13 -34

CALL 109 print the argument stack 13 -44

CALL 112 user LED control 13 -47
CALL 120 clear BASIC module input and output buffers 13 -57

Program Port

Statement Page

PRINT 11 -29
GET 11 -12
INPL 11 -16
INPS 11 -16
INPUT 11 -17
EOF 9 -17
LIST 10 -9
CALL 78 set program port baud rate 13 -8

PRT1 Port

Statement Page

MODE 11 -20
PRINT@ 11 -29
GET@ 11 -12
INPL@ 11 -16
INPS@ 11 -16
INPUT@ 11 -17
EOF@ 9 -17
LIST@ 10 -9
CALL 94 display current PRT1 port setup 13 -32
CALL 95 get number of characters in PRT1 buffers 13 -32
CALL 96 clear PRT1 receive/transmit buffers 13 -33

CALL 99 reset print head pointer 13 -34

CALL 103 print PRT1 transmit buffer and pointer 13 -36
CALL 104 print PRT1 receive buffer and pointer 13 -37
CALL 105 reset PRT1 to default settings 13 -37

Port Communication Calls

Chapter
Using BASIC Module Statements

7

7 -3

PRT2 Port

Statement Page

MODE 11 -20
PRINT# 11 -29
GET# 11 -12
INPL# 11 -16
INPS# 11 -16
INPUT# 11 -17
EOF# 9 -17
LIST# 10 -9
CALL 30 PRT2 port support parameter set 12 -20
CALL 31 display PRT2 port parameters 12 -21
CALL 35 retrieve numeric input character from PRT2 port 12 -34
CALL 36 get number of characters in PRT2 port buffers 12 -35
CALL 37 clear PRT2 port buffers 12 -35
CALL 97 enable PRT2 DTR 13 -33
CALL 98 disable PRT2 DTR 13 -34

CALL 99 reset print head pointer 13 -34

CALL 110 print the PRT2 port transmit buffer and pointer 13 -45
CALL 111 print the PRT2 receive buffer and pointer 13 -46
CALL 119 reset the PRT2 port to default settings 13 -56

The BASIC module communicates with the PLC processor using
block-transfer communications. The PLC processor sends variable length
blocks of data to the module. You can transfer a maximum of 64 words in
and 64 words out per scan. The module responds with the requested block
length of data. The module has an auxiliary processor dedicated to
servicing of the block-transfers to and from the PLC processor. Use these
support routines to provide the communications link between the PLC
processor and the BASIC processor. See Chapter 5 for more information
on block-transfers.

Statement Page

CALL 2 timed-block-transfer-read buffer 12 -2
CALL 3 timed-block-transfer-write buffer 12 -3
CALL 4 set block-transfer-write length 12 -4
CALL 5 set block-transfer-read length 12 -4
CALL 6 block-transfer-write buffer 12 -5
CALL 7 block-transfer-read buffer 12 -5
CALL 120 clear BASIC module input and output buffers 13 -57

Block-Transfer Support
Calls

Chapter

Chapter
Using BASIC Module Statements

7

7 -4

Use these calls to convert numbers between integer and BASIC
floating-point. Use these calls also to transfer data to the BASIC module
block-transfer-read buffer for transfer to the PLC processor (using
CALL 2, page 12 -2 or CALL 7, page 12 -5) and to retrieve data from the
BASIC module block-transfer-write buffer after transfer from the PLC
processor (using CALL 3, page 12 -3 or CALL 6, page 12 -5). You can
use these calls within the BASIC program or from the command line.
See Chapter 8 for more information on number conversions.

Statement Page

CALL 10 3-digit decimal BCD to BASIC floating point 12 -6
CALL 11 16-bit binary to BASIC floating point 12 -7
CALL 12 4-digit octal to BASIC floating point 12 -7
CALL 13 6-digit decimal BCD to BASIC floating point 12 -8
CALL 14 SLC 16-bit signed integer to BASIC floating point 12 -8
CALL 15 SLC 16-bit unsigned integer to BASIC floating point 12 -9
CALL 17 4-digit BCD to BASIC floating point 12 -11
CALL 20 BASIC floating point to 3-digit decimal BCD 12 -12
CALL 21 BASIC floating point to 16-bit binary 12 -13
CALL 22 BASIC floating point to 4-digit octal 12 -13
CALL 23 BASIC floating point to 6-digit decimal BCD 12 -14
CALL 24 BASIC floating point to SLC 16-bit signed integer 12 -15
CALL 25 BASIC floating point to SLC 16-bit binary 12 -16
CALL 26 BASIC floating point to 3.3-digit BCD 12 -17
CALL 27 BASIC floating point to 4-digit BCD 12 -17
CALL 39 3.3-Digit Signed, BCD to BASIC Floating Point 12 -38
CALL 88 BASIC floating point to PLC-5 floating point 13 -16
CALL 89 PLC-5 floating point to BASIC floating point 13 -17

Use these calls to set and display the real time clock/calendar within the
BASIC module or from the command line.

Statement Page

CLOCK 0 11 -4
CLOCK 1 11 -5
ONTIME 11 -25
TIME 9 -19
CALL 40 set wall clock time 12 -39
CALL 41 set wall clock date 12 -40
CALL 42 set wall clock day of week 12 -40
CALL 43 date/time retrieve string 12 -41
CALL 44 date retrieve numeric 12 -41
CALL 45 time retrieve string 12 -42
CALL 46 time retrieve numeric 12 -42
CALL 47 retrieve day of week string 12 -43
CALL 48 retrieve day of week numeric 12 -43
CALL 52 date retrieve string 12 -58

Number Conversion Calls

Chapter

Clock/Calendar Calls

Chapter
Using BASIC Module Statements

7

7 -5

Use theses calls to manipulate string data structures within a BASIC
program or from the command line.

Statement Page

STRING 11 -37
CALL 60 string repeat 12 -59
CALL 61 string append 12 -60
CALL 62 number to string conversion 12 -61
CALL 63 string to number conversion 12 -62
CALL 64 find a string in a string 12 -63
CALL 65 replace a string in a string 12 -64
CALL 66 insert a string in a string 12 -65
CALL 67 delete a string from a string 12 -66
CALL 68 determine length of a string 12 -67

Use these calls when the DH485 port is configured for
 DH-485 communications.

Important: CALLs 29, 49, 50, and 118 are for background operation.
Do not attempt to execute standard DH-485 calls while background calls
are enabled and active. Invalid data transfers could result.

Statement Page

CALL 29 read/write to PLC/SLC from module internal string 12 -18
CALL 49 read remote DH-485 SLC data file 12 -44
CALL 50 write to remote DH-485 SLC data file 12 -50

CALL 83 display DH485 port setup 13 -11

CALL 84 transfer DH-485 CIF to BASIC input buffer 13 -12
CALL 85 transfer BASIC output buffer to DH-485 CIF file 13 -13
CALL 86 check DH-485 interface remote write status 13 -14
CALL 87 check DH-485 interface file remote read status 13 -15
CALL 90 read remote DH-485 data file to BASIC input buffer 13 -18
CALL 91 write BASIC output buffer to remote DH-485 data file 13 -22
CALL 92 read remote DH-485 CIF to BASIC input buffer 13 -26
CALL 93 write output buffer to remote DH-485 CIF file 13 -29
CALL 118 PLC/SLC unsolicited writes 13 -52
CALL 120 clear BASIC module input and output buffers 13 -57

String Calls

DH-485 Communication

Chapter
Using BASIC Module Statements

7

7 -6

Use these calls when you have PRT2 port configured for DF1 protocol.

Important: CALL 108 must be used before any standard or background
DF1 calls.

Important: CALLs 29, 118, 122 and 123 are for background operation.
Do not attempt to execute standard DF1 calls while background calls are
enabled and active. Invalid data transfers could result.

Statement Page

ONDF1 11 -22
CALL 16 enable/disable DF1 packet interrupt 12 -10
CALL 29 read/write to PLC/SLC from module internal string 12 -18
CALL 108 enable DF1 driver communications 13 -38
CALL 113 disable DF1 driver communications 13 -47
CALL 114 transmit DF1 packet 13 -48
CALL 115 check DF1 status 13 -49
CALL 117 get DF1 packet length 13 -51
CALL 118 PLC/SLC unsolicited writes 13 -52
CALL 120 clear BASIC module input and output buffers 13 -57
CALL 122 read remote DF1 PLC data file 13 -58
CALL 123 write to remote DF1 PLC data file 13 -66

Use these calls to perform background operations while the BASIC module
is executing a program.

Statement Page

CALL 16 enable/disable DF1 packet interrupt 12 -10
CALL 33 transfer data from PRT1/PRT2 to BTR buffer 12 -23
CALL 34 transfer data from BTW buffer to PRT1/PRT2 12 -29
CALL 49 read remote DH-485 SLC data file 12 -44
CALL 50 write to remote DH-485 SLC data file 12 -50
CALL 118 PLC/SLC unsolicited writes 13 -52
CALL 122 read remote DF1 PLC data file 13 -58
CALL 123 write to remote DF1 PLC data file 13 -66

DF1 Protocol
Communication

Background Operations

Chapter
Using BASIC Module Statements

7

7 -7

Use these calls to cause a function to occur within the BASIC module.
You cannot execute these calls within the BASIC program, but rather enter
them at the command line.

Statement Page

CALL 31 display PRT2 port parameters 12 -21

CALL 73 battery-backed RAM disable 13 -5

CALL 74 battery-backed RAM enable 13 -5

CALL 77 protected variable storage 13 -6

CALL 81 user PROM check and description 13 -10

CALL 82 check user memory module map 13 -11

CALL 83 display DH485 port setup 13 -11

CALL 94 display current PRT1 port setup 13 -32

CALL 101 upload user (E)EPROM code to host 13 -35

CALL 103 print PRT1 transmit buffer and pointer 13 -36

CALL 104 print PRT1 receive buffer and pointer 13 -37

CALL 109 print the argument stack 13 -44

CALL 110 print the PRT2 port transmit buffer and pointer 13 -45

CALL 111 print the PRT2 receive buffer and pointer 13 -46

Use these calls to control data flow and program transfer between ROM
and RAM within the BASIC program.

Statement Page

GOSUB 11 -13
ONDF1 11 -22
ONERR 11 -23
ON-GOSUB 11 -24
ONTIME 11 -25
POP 11 -28
PUSH 11 -30
RETI 11 -33
RETURN 11 -34
STOP 11 -36
CALL 16 enable/disable DF1 packet interrupt 12 -10
CALL 32 enable/disable processor interrupt 12 -22
CALL 38 expanded ONERR restart 12 -36
CALL 70 ROM to RAM program transfer 13 -2
CALL 71 ROM/RAM to ROM program transfer 13 -3
CALL 72 RAM/ROM return 13 -4

Command Line Calls

Execution Control and
Interrupt Support Calls

Chapter
Using BASIC Module Statements

7

7 -8

Use these calls to allow the BASIC module to read input data from its
external ports. You can execute these calls within a program or from the
command line.

Statement Page

GET 11 -12
INPL 11 -16
INPS 11 -16
INPUT 11 -17
LD@ 11 -18
READ 11 -31
CALL 29 read/write to PLC/SLC from module internal string 12 -18
CALL 33 transfer data from PRT1/PRT2 to BTR buffer 12 -23
CALL 35 retrieve numeric input character from PRT2 port 12 -34
CALL 36 get number of characters in PRT2 port buffers 12 -35

CALL 84 transfer DH-485 CIF to BASIC input buffer 13 -12

CALL 90 read remote DH-485 data file to BASIC input buffer 13 -18

CALL 92 read remote DH-485 CIF to BASIC input buffer 13 -26

CALL 95 get number of characters in PRT1 buffers 13 -32

CALL 117 get DF1 packet length 13 -51

CALL 118 PLC/SLC unsolicited writes 13 -52

CALL 122 read remote DF1 PLC data file 13 -58

Input Calls

Chapter
Using BASIC Module Statements

7

7 -9

Use these calls to allow the transfer of data from the BASIC module to
external ports PRT1, PRT2, and DH485 within the BASIC program or
from the command line.

Statement Page

PH0 11 -27
PH1 11 -27
PRINT 11 -29
ST@ 11 -35
CALL 29 read/write to PLC/SLC from module internal string 12 -18
CALL 31 display PRT2 port parameters 12 -21
CALL 34 transfer data from BTW buffer to PRT1/PRT2 12 -29
CALL 37 clear PRT2 port buffers 12 -35
CALL 49 read remote DH-485 SLC data file 12 -44
CALL 50 write to remote DH-485 SLC data file 12 -50

CALL 83 display DH485 port setup 13 -11

CALL 85 transfer BASIC output buffer to DH-485 CIF file 13 -13
CALL 91 write BASIC output buffer to remote DH-485 data file 13 -22
CALL 93 write output buffer to remote DH-485 CIF file 13 -29
CALL 94 display current PRT1 port setup 13 -32
CALL 96 clear PRT1 receive/transmit buffers 13 -33
CALL 100 download/program assembly language to EEPROM 13 -35
CALL 112 user LED control 13 -47
CALL 114 transmit DF1 packet 13 -48
CALL 116 call user defined assembly language routine 13 -50
CALL 123 write to remote DF1 PLC data file 13 -66

Use these calls to set port parameters within a BASIC program or from the
command line.

Statement Page

MODE 11 -20
CALL 18 re-enable control C break function 12 -11
CALL 19 disable the control C break function 12 -12
CALL 30 PRT2 port support parameter set 12 -20
CALL 78 set program port baud rate 13 -8

CALL 99 reset print head pointer 13 -34

CALL 105 reset PRT1 to default settings 13 -37
CALL 108 enable DF1 driver communications 13 -38
CALL 113 disable DF1 driver communications 13 -47
CALL 119 reset the PRT2 port to default settings 13 -56

Output Calls

Setup Calls

Chapter
Using BASIC Module Statements

7

7 -10

Use these calls to monitor the status of the BASIC module. You can
execute these calls from a BASIC program or from the command line.

Statement Page

CALL 80 check battery condition 13 -9
CALL 86 check DH-485 interface remote write status 13 -14
CALL 87 check DH-485 interface file remote read status 13 -15

CALL 115 check DF1 status 13 -49

Data Types

8 � Argument Stack
� Control Stack
� String Data Types
� Numeric Data Types
� Backplane Conversion Data Types

Status Calls

What’s Next?

8 Chapter

8 -1

Data Types

This chapter describes: On page:

argument stack 8 -1

control stack 8 -1

string data types 8 -2

numeric data types 8 -3

backplane conversion data types 8 -4

what’s next? 8 -9

The argument stack (A-stack) stores all constants that the BASIC module
is currently using. Operations (see Chapter 9) such as add, subtract,
multiply, and divide always operate on the first two numbers of the
argument stack and return the result to the stack. The argument stack is
203 bytes long. The BASIC module stores all constants and variables as
floating point. Each floating point number placed in the stack requires 6
bytes of storage. The argument stack can hold up to 33 floating point
numbers before overflowing.

In addition, the PUSH command (page 11 -30) saves data to the argument
stack and the POP (page 11 -28) command restores data from the stack.
PUSHes and POPs are typically associated with call routines. Pushes and
Pops are mechanisms you use to transfer information to and from call
routines. PUSH makes a copy of the variable you PUSHed, then puts that
copy on the top of the argument stack. POP takes the value on the top of
the argument stack and copies it to the variable you POPped.

The control stack (C-stack) stores all information associated with loop
control (ex. DO-WHILE, DO-UNTIL, FOR-NEXT, etc.) The control
stack is 157 bytes long. DO-WHILE and DO-UNTIL loops use 3 bytes of
the control stack. FOR-NEXT loops use 17 bytes of the the control stack.
Calculate the number of operations you are using times the number of
bytes each operation uses to determine how many levels you can nest.

For example, if you have no GOSUBs to return from, no DO-UNTIL or
FOR-NEXT loops running you can nest DO-WHILE loops 52 levels
(157/3). Or if you have no GOSUBs to return from, no DO-UNTIL or
DO-WHILE loops running you can nest FOR-NEXT loops 9 levels
(157/17). Typically your program uses several different combinations of
statements that use the C-stack memory.

What’s in This Chapter?

Argument Stack

Control Stack

Chapter
Data Types

8

8 -2

A string is a character or group of characters stored in memory.
Usually, the characters stored in a string make up a word or a sentence.
Strings allow you to use characters instead of numbers. Strings are shown
as $(expr).

The BASIC module uses single-dimension string variables, $(expr).
The dimension of a string variable (the expr value) ranges from 0 to 254.
This means you can define and manipulate 255 different strings in the
BASIC module. Initially, memory is not allocated for strings.
You allocate memory with the STRING statement (page 11 -37).
Declare and manipulate strings through the $ type declaration character
(page 9 -2).

You can only use one STRING statement in your program to allocate
memory for all the strings you want to use in your program.
When allocating memory for strings remember that the STRING statement
itself has one overhead byte. As well, BASIC uses one overhead byte per
string declared within the STRING statement.

For example, STRING 106,20 allocates 106 bytes for string memory.
The 106 bytes of string memory includes five 20-byte strings (100 bytes),
five overhead bytes (1 per string) and one additional byte (for the STRING
statement itself). The BASIC module automatically numbers these fives
strings as $(0), $(1), $(2), $(3), and $(4).

In the BASIC module you can define strings with the:

 LET statement (page 11 -19)
 INPUT statement (page 11 -17)
 ASC operator (page 9 -14)

Remember define strings first, unless you are executing a CALL 77 (page
13 -6). Then, execute CALL 77 first and define your strings immediately
after.

String Data Types

Tip

Chapter
Data Types

8

8 -3

Two numeric data types exist:

 integer
 floating-point

You can enter and display these numeric data types in four formats:

 integer (ex. 129)
 decimal (ex. 34.98)
 hexadecimal (ex. 0A6EH)
 exponential (ex. 1.23456E+3)

The BASIC module interprets all numbers as floating point numbers
except when performing logical operations. When performing logical
operations, the BASIC module converts floating point numbers to integers,
performs the operation, then converts the result back to floating point.

Integer Numbers

The BASIC module operates on unsigned 16-bit integers, ranging from 0
to 65535 or 0FFFFH. You can enter all integers in either decimal or
hexadecimal format. You indicate a hexadecimal number by placing the
character H after the number (ex.170H). If the hexadecimal number begins
with A - F, then you must precede it by a zero. For example, you must
enter A567H as 0A567H. When an operator, such as .AND. (page 9 -7)
requires an integer, the BASIC module truncates the fraction portion of the
number so it fits the integer format. For example, both 6.3 and 6.8 when
interpreted as an integer would equal 6.

Floating-Point Numbers

The BASIC module stores all numbers as floating-point numbers.
Floating-point numbers are numbers in which the decimal point floats
depending on the significant digits of a specific number. The BASIC
module accounts for the location of the decimal point. This allows the
BASIC module to store only the significant digits of a value, thus saving
memory space.

You can represent ±1E -127 to ±.99999999 +127 in the BASIC module.
There are eight significant digits. Numbers are internally rounded to fit
this precision.

Numeric Data Types

Chapter
Data Types

8

8 -4

The BASIC module communicates with the local processor through the
I/O chassis backplane. All data communicated to and from the PLC
processor is in PLC format.

The BASIC module interfaces with the PLC-2, PLC-3 and PLC-5 family
processors. Converted data is exchanged with programmable controllers
using block-transfers.

You can send these data type to the PLC processor:

 SLC 16-bit signed integer (-32768 to 32767)
 SLC 16-bit binary (0 to 65, 535)
 16-bit binary (0000000000000000 to 1111111111111111)
 3-digit, signed, fixed decimal BCD (+XXX.)
 4-digit, unsigned, fixed decimal BCD (XXXX.)
 4-digit, signed, octal (+XXXX)
 6-digit, signed fixed decimal BCD (+XXXXXX.)
 3.3-digit, signed, fixed decimal BCD (+XXX.XXX)
 floating point (±1.1754944E–38 to ±3.4028237E+38)

You can send these data types to the BASIC module:

 16-bit signed integer (-32768 to 32767)
 SLC 16-bit unsigned integer (0 to 65,535)
 SLC 16-bit binary (4 Hex digits)(XXXX)
 3-digit, signed, fixed decimal BCD (+XXX.)
 4-digit, unsigned, fixed decimal BCD (XXXX.)
 4-digit, signed, octal (+XXXX.)
 6-digit, signed, fixed decimal BCD (+XXXXXX.)
 3.3-digit, signed, fixed decimal BCD (+XXX.XXX)
 floating point (±1.1754944E–38 to ±3.4028237E+38)

SLC 16-Bit Signed Integer
This value requires one word of the processor data table. The data is
represented by 15 integer bits and one sign bit, bit 15. The value ranges
from –32,768 to 32,767. If you use a value that is not within this range
you get a BAD ARGUMENT error and program execution halts. Note that
these calls are used with DH-485 calls .See CALL 14 (page 12 -8) and
CALL 24 (page 12 -15).

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Integer Value 15031

sign bit (1 = negative; 0 = positive)

Backplane Conversion
Data Types

Chapter
Data Types

8

8 -5

SLC 16-Bit Unsigned Integer (SLC 16-Bit Binary)
This value requires one word of the processor data table. The data is
represented by 16 straight binary. The value ranges from 0 to 65,535.
If you use value less than 0, then the value placed in the output buffer is 0.
If you use a value greater than 65,535 the value placed in the output buffer
is 65,535. You are responsible for checking the range of the number before
conversion. Note that these calls are used with DH-485 calls. See CALL
15 (page 12 -9) and CALL 25 (page 12 -16).

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Integer Value 15031

16-Bit Binary (4 Hex Digits)
This value requires one word of the processor data table. The data is
represented by 16 straight binary bits. The value ranges from 0 to 65,535.
No sign, overflow or underflow bits are affected or decoded. If you use a
value larger than 65,535 or a negative number you get a BAD ARGUMENT
error and program execution halts. See CALL 11 (page 12 -7) and CALL
21 (page 12 -13),

17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

Binary Value 15031

3-Digit, Signed, Fixed Decimal BCD
This value requires one word of the processor data table. The data is
represented by a 3-digit binary coded decimal integer. Overflow,
underflow and sign are also indicated. An underflow or overflow
condition sets the appropriate bit and a value of 000 is returned. The value
ranges from –999 to +999. Fractional portions of any number used with
the routine are truncated. See CALL 10 (page 12 -6) and CALL 20 (page
12 -12).

17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

not used

underflow bit (1 = value is fractional and between +1 & –1
(ie. +.999 to –.999)
sign bit (1 = negative; 0 = positive)

overflow bit (1 = value >+999 or < –999)

BCD Value
implied
decimal point

15032

D3 D2 D1

Chapter
Data Types

8

8 -6

4-Digit, Unsigned, Fixed Decimal BCD

This value requires one word of the processor data table. The data is
represented by a 4-digit BCD integer. The value ranges from 0–9999.
There is no indication of sign, underflow or overflow. However, if a value
of greater than 9999 is converted or an invalid number, the value reported
is 0000. Fractional portions of any number used with the routine are
truncated. See CALL 17 (page 12 -11) and CALL 27 (page 12 -17).

17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

BCD Value

implied
decimal point

15033

D4 D3 D2 D1

4-Digit, Signed, Octal

This value requires one word of the processor data table. The data is
represented by a 4-digit octal integer. The value ranges from +77778
(+4095). Overflow, underflow and sign are also indicated. If an overflow
or underflow condition exists, the appropriate bit is set and the value of
000 is reported. Fractional portions of any number used in this routine are
truncated. See CALL 12 (page 12 -7) and CALL 22 (page 12 -13).

17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

not used

underflow bit (1 = value is fractional and between +1 & –1
(ie. +.999 to –.999)

sign bit (1 = negative; 0 = positive)

overflow bit (1 = value > +999)

Octal Value
implied
decimal point

15034

D3 D2 D1D4

–

Chapter
Data Types

8

8 -7

6-Digit, Signed, Fixed Decimal BCD

This value requires two words of the processor data table. The first word
contains overflow, underflow and sign data and the three most significant
digits of the 6-digit BCD integer. The second word contains the lower
three digits of the value. The value ranges from –999999 to +999999.
If an overflow or underflow condition exists, the appropriate bit is set and
a value of 000000 is reported. Fractional portions of any number used
with this routine are truncated. See CALL 13 (page 12 -8) and CALL 23
(page 12 -14).

17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

not used

underflow bit (1 = value is fractional and between +1 & –1
(ie. +.999 to –.999)

sign bit (1 = negative; 0 = positive)

overflow bit (1 = value > +999999)

Upper Half BCD Value

15035

D6 D5 D4
Word 1

–

17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

D3 D2 D1
Word 2

Lower Half BCD Value

not used

implied
decimal point

Chapter
Data Types

8

8 -8

3.3-Digit, Signed, Fixed Decimal BCD

This value requires two words of the processor data table. The first word
contains the overflow, underflow, sign data and the three most significant
digits of the value. The second word contains the lower three digits of the
value. The value ranges from –999.999 to +999.999. If an overflow or
underflow condition exists, a value of 000.000 is reported and the
appropriate bit is set. Any digits more than 3 places to the right of the
decimal point are truncated. See CALL 26 (page 12 -17) and CALL 39
(page 12 -38).

17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

not used

underflow bit (1 = value smaller than + .001 (ie. .0002)

sign bit (1 = negative; 0 = positive)

overflow bit (1 = value > + 999.999)

Integer Portion of Value

15036

D6 D5 D4
Word 1

–

17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

D3 D2 D1
Word 2

Fractional Portion of Value

not used

implied
decimal point

–

Chapter
Data Types

8

8 -9

Floating Point

The PLC-5 floating point number is a 7-digit binary floating point number
(IEEE Float 32- bit value). The values range from:

 ±1.1754944E–38 to ±3.4028237E+38

The BASIC module floating point number us an 8-digit BCD floating
point number. The range of the BASIC module floating point number is:

±1E–127 to ±.99999999E+127

The BASIC module has a floating point range larger than the floating point
range of the PLC-5 processor. If CALL 88 attempts to convert a number
larger than ±3.4028237E+38, the converted number is a assigned a value of
±3.4028237E+38. If CALL 88 attempts to convert a number smaller than
±1.1754944E–38, the converted number is assigned a value of
±1.1754944E–38.

PLC-5 floating point numbers are stored in 2 words of the BTR or BTW
buffer. See CALLs 88 and 89 (page 13 -16).

Important: Due to the fact that the PLC-5 floating point number is a
7-digit floating point number, and the BASIC module is an 8-digit floating
point number, some round off error may be introduced during number
conversions.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Mantissa (23 bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

sign bit (1 = negative; 0 = positive)

Exponent (8 bits)

Expressions,
Variables, and
Operators

9What’s Next?

Chapter
Data Types

8

8 -10

Notes:

9 Chapter

9 -1

Expressions, Variables and Operators

This chapter describes: On page:

expressions 9 -1

relational expressions 9 -1

constants 9 -1

variables 9 -2

order of operations 9 -3

arithmetic operators 9 -5

bitwise operators 9 -7

relational operators 9 -9

trigonometric operators 9 -10

functional operators 9 -11

logarithmic operators 9 -13

string operators 9 -14

special function operators 9 -17

what’s next? 9 -20

An expression is a logical mathematical expression that uses operators,
constants, and variables to produce a result. Expressions can be simple or
complex.

 simple expression: A+B–C or 10*X/20
 complex expression: 12*(SIN(A)*SIN(A)+COS(A))*(COS(A)/2)

A stand alone variable or constant is also considered an expression.

Relational expressions involve the operators EQUAL (=), NOT EQUAL
(<>), GREATER THAN OR EQUAL TO (>=), and LESS THAN OR
EQUAL TO (<=). You use them in control statements to test a condition
(ex. IF A<100 THEN...). Relational expressions always require two
operands. See relational operators on page 9 -9 for more information.

A constant is a real number that ranges from ±1E–127 to ±.9999999 9E+127.
A constant can be an integer.

What’s in This Chapter?

Expressions

Relational Expressions

Constants

Chapter
Expressions, Variables and Operators

9

9 -2

Variables may represent either numeric values or strings. Numeric values
are floating point variables and do not require a type declaration.
Strings are string variable types and do require a type declaration.
The type declaration character for string is $. Variable names:

 Must be no more than 8 characters long.

 Must have a unique first and last character when the variable length is
the same. (For example, the BASIC module reads “cat” and “cot” as the
same variable name. However, “cat” and “cod” are unique and so are
“cat” and “chant”.)

 Can include letters, numbers and a decimal point.

 Cannot be a reserved word.

 Can include special type declaration characters ($ for string)

A variable can be a letter followed by a:

 single-dimension expression (ex. G(A+6))

 number followed by a single-dimension expression (ex. G2(A+6))

 number or letter (ex. G1 or GA) except for these combinations:
CR, DO, IE, IF, IP, ON, PI, SP, TO, UI, UO

Important: Embedded reserved words cannot be used as variable names
(ex. FORT, PRINTER, LENGTH).

Variables that include a single-dimension expression expr are called
dimensioned or arrayed variables (ex. J(4), G(A+6)). Variables that
contain a letter or a letter and a number are called scalar variables (ex. AA,

A1) . Any variables entered in lower case are changed to upper case.

The BASIC module allocates variables in a static manner, meaning the first
time a variable is used, the BASIC module allocates a portion of memory
(8 bytes) specifically for that variable. You cannot de-allocate this
memory on a variable to variable basis. For example, if you execute a
statement, you cannot tell the BASIC module that the variable no longer
exists to free up the 8 bytes of memory that belong to that variable.
You can clear the memory allocated to variables with a CLEAR statement
(page 11 -2). The CLEAR statement frees all memory allocated to
variables. Variables may be set aside for reuse to save memory.

Important: The BASIC module requires less time to find a scalar variable
because there is not an expression to evaluate. To run a program as fast as
possible, use dimensioned variables only when necessary. Use scalar
variables for intermediate variables and assign the final result to a
dimensioned variable. Also, put the most frequently used variables first.
Variables defined first require the least amount of time to locate.

Variables

Chapter
Expressions, Variables and Operators

9

9 -3

Eight types of operators may act on an expression:

� arithmetic ��functional

��logical ��logarithmic

��relational ��string

��trigonometric ��special function

An operator performs a defined operation on variables or constants.
Operators require either one (ex. SIN, COS, and ABS) or two operands
(ex. +, -,*, /).

You can write complex expressions using only a small number of
parentheses. An expression is scanned from left to right. Operators of the
higher precedence are performed before operators of lower precedence.
If the operators are of equal precedence they are performed as encountered
from left to right. The precedence of operators from highest to lowest:

1. Operators that use parentheses ()

2. Exponentiation (**)

3. Negation (-)

4. Multiplication (*) and Division (/)

5. Addition (+) and Subtraction (-)

6. Relational Expressions (=, <>, >, >=, <, <=).

7. Logical AND (.AND.)

8. Logical OR (.OR.)

9. Logical XOR (.XOR.)

To illustrate the order of operations, examine this equation:

4+3*2

In this equation you cannot perform addition until the multiplication
operation is complete because multiplication has a higher precedence.
Therefore, multiply (3*2) and then add 4.

4+3*2 = 10

Important: Use parentheses if you are in doubt about the order of
precedence or to enhance program readability.

Order of Operations

Chapter
Expressions, Variables and Operators

9

9 -4

Operator Function Page

ABS return the absolute value of expression 9 -11

+ add expressions together 9 -5

ASC return integer value of ASCII character 9 -14

ATN return arctangent of argument 9 -11

@ or # communication direction 9 -17

CBY retrieve data from core or program memory address location 9 -18

CHR convert numeric expression to ASCII value 9 -16

COS return the cosine of argument 9 -10

DBY retrieve/assign data to/from internal data memory 9 -18

 / divide first expression by second expression 9 -5

EOF test for empty input buffer 9 -17

EXP raise e to power of argument 9 -13

** raise first expression by the power of the second expression 9 -5

FREE list available bytes in RAM 9 -17

INT return integer portion of expression 9 -12

LEN list amount of bytes in current program 9 -17

LOG () return the natural log of the argument 9 -13

.AND. combine the first expression with the second expression using .AND. 9 -7

.OR. combine the first expression with the second expression using .OR. 9 -8

.XOR. combine the first expression with the second expression using .XOR. 9 -8

MTOP return last valid memory address 9 -18

* multiply expressions together 9 -5

– negation 9 -6

NOT returns the one’s complement or inverse of the number 9 -11

PI store constant. PI 9 -12

RND return a pseudo–random number 9 -12

SGN return the sign of argument 9 -12

SIN return the sine of argument 9 -10

SQR return the square root of the argument 9 -12

– subtract one expression from another 9 -5

TAN return the tangent of argument 9 -10

TIME read/assign the free running clock 9 -19

XBY read/assign external data memory 9 -19

= allow the first expression to equal the second expression 9 -9

< allow the first expression to be less than the second expression 9 -9

<= allow the first expression to be less than or equal to the second expression 9 -9

> allow the first expression to be greater than the second expression 9 -9

>= allow the first expression to be greater than or equal to the second expression 9 -9

<> allows the first expression to be unequal to the second expression 9 -9

Chapter
Expressions, Variables and Operators

9

9 -5

The BASIC module contains a complete set of two-operand and
one-operand arithmetic operators.

The general form of all two-operand instructions is:

(expr) OP (expr), where OP is one of these arithmetic operators.

Add (+)

Use the addition operator to add the first and the second expressions
together.

>PRINT 3+2

Result: 5

Divide (/)

Use the division operator to divide the first expression by the second
expression.

>PRINT 100/5

Result: 20

Exponentiation (**)

Use the exponentiation operator to raise the first expression to the power of
the second expression. The maximum power to which you can raise a
number is 255. (See also EXP page 9 -13)

>PRINT 2**3

Result: 8

Multiply (*)

Use the multiplication operator to multiply the first expression by the
second expression.

>PRINT 3*3

Result: 9

Subtract (–)

Use the subtraction operator to subtract the second expression from the
first expression.

>PRINT 9-6

Result: 3

Arithmetic Operators

Chapter
Expressions, Variables and Operators

9

9 -6

Negation (–)

Use the negation operator to change an expression from positive to
negative.

>PRINT -(9+4)

Result: -13

Arithmetic Errors

During the evaluation of an expression if a number is too large (overflow)
or too small (underflow), or division by zero error occurs, the BASIC
module generates error messages and reverts to Command mode.

The largest result allowed from any calculation is 0.99999999 E+127.
If you exceed this number, the BASIC module generates the ERROR:

ARITH. OVERFLOW message and returns to Command mode.

The smallest result allowed from any calculation is 0.99999999 E–128.
If you exceed this number, the BASIC module generates the ERROR:

ARITH. UNDERFLOW message and returns to Command mode.

If you attempt to divide any number by zero, the BASIC module generates
the ERROR: DIVIDE BY ZERO message and returns to Command mode.

Refer to the ONERR statement (page 11 -23) for more information on how
to trap these errors.

Chapter
Expressions, Variables and Operators

9

9 -7

The BASIC module contains a complete set of bitwise logical operators.
Bitwise operators perform their operations on a bit-by-bit level. Therefore,
BASIC changes the integers in the expressions to HEX/binary. BASIC can
perform bitwise operations on numbers between 0 (0000H) and 65535
(0FFFFH) inclusive. If the argument is outside this range, then the BASIC
module generates an ERROR: BAD ARGUMENT message and returns to
Command mode. All decimal places are truncated, not rounded.

Refer to this truth table when performing bitwise operations.

When X is: and Y is: X .AND.Y bit set to: X .OR. Y bit set to: X .XOR. Y bit set to:

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Note: 0 = false/off 1 = true/on
X = a bit in the first operand Y = a bit in the second operand

.AND.

Use the .AND. operator to perform a bitwise AND on two expressions.
The .AND. operator compares the bits of the two expressions and sets the
bit to 1 (true) if both bits being compared are set to 1 (true).

>PRINT 3.AND.2 Result: 2

This example performs a bitwise AND on the integers 3 and 2 and prints
the result. First, BASIC converts 3 and 2 to binary:

3 = 0011
2 = 0010

Then the BASIC module compares each digit of the binary number to
determine if both bits are set to a 1. For example, the first digit of both
numbers is 0 (false) so the result is 0.

0011
0010
0010

BASIC converts the resulting binary number back into an integer and
prints the result.

0010 = 2

Bitwise Operators

Chapter
Expressions, Variables and Operators

9

9 -8

.OR.

Use the bitwise .OR. operator to perform a bitwise OR on two expressions.
The .OR. operator compares the bits of the two expressions and sets the bit
to 1 (true) if either of bits being compared is set to 1 (true).

>PRINT 1.OR.4 Result: 5

This example performs a bitwise OR on the integers 1 and 4 and prints the
result. First, BASIC converts 1 and 4 to binary:

1 = 0001
4 = 0100

Then the BASIC module compares each digit of the binary number to
determine if either of the bits is set to a 1. For example, the last digit of the
first operand is 1 (true) and the last digit of the second operand is 0 (false)
so the resulting bit is set to 1.

0001
0100
0101

The BASIC module converts the resulting binary number back into an
integer and prints the result

0101 = 5

.XOR.

Use the bitwise .XOR. operator to perform an exclusive OR on two
expressions. The .XOR. compares the two bits of the expressions and sets
the bit to 1 (true) only if one of the bits in the comparison is set to 1 (true).

>PRINT 7.XOR.6 Result: 1

This example performs a bitwise XOR on the integers 7 and 6 and prints
the result. First, BASIC converts 7 and 6 to binary:

7 = 0111
6 = 0110

Then the BASIC module compares each digit of the binary number to
determine if only one of the bits is set to a 1. For example, the second digit
of first operand is 1 (true) and the second digit of the second operand is 1
(true) so the resulting bit is set to 0 (false) because both digits are set to 1.

0111
0110
0001

The BASIC module converts the resulting binary number back into an
integer and prints the result.

0001 = 1

Chapter
Expressions, Variables and Operators

9

9 -9

Relational expressions involve the operators =, < >, >, >=, <, and <=.
In the BASIC module, you typically use relational operations to test a
condition.

The BASIC module relational operators return a result of 65535 (0FFFFH)
if the relational expression is true, and a result of 0 if the relation
expression is false. The result returns to the argument stack. Because of
this, it is possible to display the result of a relational expression.

>PRINT 1=0

0

>PRINT 1>0

65535

>PRINT A<>A

0

>PRINT A=A

65535

You can chain relational expressions with the logical operators .AND.,
.OR., and .XOR. (page 9 -8). This makes it possible to test a complex
condition with one statement.

>10 IF (A>E).AND.(A>C).OR.(A>D)THEN...

Additionally, you can use the NOT operator (page 9 -11).

>10 IF NOT(A>E).AND.(A>C)THEN...

Important: When using logical operators to link relational expressions,
you must be sure operations are performed in the proper sequence.
When in doubt, use parentheses.

Relational Operators

Chapter
Expressions, Variables and Operators

9

9 -10

The BASIC module contains a complete set of trigonometric operators.
These operators are one-operand operators. The SIN, COS, and TAN
operators use a Taylor series to calculate the function. These operators
first reduce the argument to a value between 0 and PI/2. This reduction is
accomplished with the equation:

reduced argument=(user arg/PI - INT(user arg/PI) *PI

The reduced argument, from the above equation, is between 0 and PI.
The reduced argument is then tested to see if is greater than PI/2 . If it is,
then it is subtracted from PI to yield the final value. If it is not, then the
reduced argument is the final value.

Although this method of angle reduction provides a simple and economical
means of generating the appropriate arguments for a Taylor series, there is
an accuracy problem associated with this technique. The accuracy
problem is noticed when the user argument is large (ex: greater than

1000). This is because significant digits in the decimal (fraction) portion
of the reduced argument are lost in the expression shown above.

Important: As a general rule, keep the arguments for the trigonometric
functions as small as possible.

SIN

Use the SIN operator to return the sine of the argument. The argument is
expressed in radians. Calculations are carried out to 7 significant digits.
The argument must be between +200000.

>PRINT SIN(PI/4) Result: .7071067

>PRINT SIN(0) Result: 0

COS

Use the COS operator to return the cosine of the argument. The argument
is expressed in radians. Calculations are carried out to 7 significant digits.
The argument must be between +200000.

>PRINT COS(PI/4) Result: .7071067

>PRINT COS(0) Result: 1

TAN

Use the TAN operator to return the tangent of the argument. The argument
is expressed in radians. The argument must be between +200000.

>PRINT TAN(PI/4) Result: 1
>PRINT TAN(0) Result: 0

Trigonometric Operators

Chapter
Expressions, Variables and Operators

9

9 -11

ATN

Use the ATN operator to return the arctangent of the argument.
The result is in radians. Calculations are carried out to 7 significant digits.
The ATN operator returns a result between +PI/2 (3.1415926/2).

>PRINT ATN(PI) Result: 1.2626272

>PRINT ATN(1) Result: .78539804

The BASIC module contains a complete set of functional operators.
These operators are single-operand operators.

ABS

Use the ABS operator to return the absolute value of the expression.

>PRINT ABS(5) Result: 5
>PRINT ABS(-5) ��������5

NOT

Use the NOT operator to return the one’s complement of the expression.
The one’s complement is the inverse of the number. BASIC converts the
integer to binary and reverses the state of each bit within the number (ex. it
turns 1s to 0s and 0’s to 1’s). Then BASIC converts the result back into
integer format. The expression must be a valid integer (ex. between 0

and 65535 (0FFFFH) inclusive). Non-integers are truncated, not
rounded.

>PRINT NOT(65000) Result: 535

This example calculates the one’s complement for the number 65000 and
prints the result. First, BASIC converts 65000 to binary:

650000 =1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0

Then the BASIC module replaces the 1’s with 0’s and the 0’s with 1s.

1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1

BASIC converts the resulting binary number back into an integer and
prints the result.

0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 = 535

Functional Operators

Chapter
Expressions, Variables and Operators

9

9 -12

INT

Use the INT operator to return the integer portion of the expression.

>PRINT INT(3.7) Result: 3
>PRINT INT(100.876) Result: 100

PI

PI is a stored constant. In the BASIC module PI is stored as 3.1415926.

SGN

Use the SGN (sign) operator to return a value of +1 if the argument is
greater than zero, 0 if the argument is equal to zero, and -1 if the argument
is less than zero.

>PRINT SGN(52) Result: 1
>PRINT SGN(0) Result: 0

>PRINT SGN(-8) Result: -1

SQR

Use the SQR operator to return the square root of the argument.
The argument may not be less than zero.

>PRINT SQR(9) Result: 3
>PRINT SQR(45) Result: 6.7082035

>PRINT SQR(100) Result: 10

RND

Use the RND operator to return a pseudo-random number in the range
between 0 and 1 inclusive. The RND operator uses a 16-bit binary seed (a
constantly changing number used as a starting number for the RND
calculation) and generates 65536 pseudo-random numbers before repeating
the sequence. The RND operator uses the same calculations to arrive at
each number, but uses a different seed each time. The numbers generated
are between 0/65535 and 65535/65535 inclusive (ex. 0.1, 0.00009,
0.345689).

>PRINT RND Result:.26771954

Chapter
Expressions, Variables and Operators

9

9 -13

The BASIC module contains a complete set of logarithmic operators.
These operators are one-operand operators.

LOG

Use the LOG operator to return the natural logarithm of the argument.
The argument must be greater than 0. This calculation is carried out to 7
significant digits.

>PRINT LOG(12) Result: 2.484906

>PRINT LOG(EXP(1)) Result: 1

If you need base 10 log, use this expression:

log10(x)=log(x)/log(10)

EXP

Use the EXP operator to raise the number e (2.7182818) to the power of
the argument. This operator is the inverse of the LOG operator. The EXP
operator is similar to the ** operator in that it raises a number to a power.
However, it is different from the ** operator in that the only number that is
raised is 2.7182818. (See also ** page 9 -5.)

>PRINT EXP(1) Result: 2.7182818

>PRINT EXP(2) Result: 7.3890559

>PRINT EXP(3) Result: 20.0855362

>PRINT EXP(LOG(2)) Result: 2

Logarithmic Operators

Chapter
Expressions, Variables and Operators

9

9 -14

Two operators in the BASIC module can manipulate strings.
These operators are ASC and CHR.

ASC

Use the ASC operator to return the integer value of the ASCII character
placed in the parentheses.

The BASIC module capitalizes all ASCII characters. The decimal
representation for the ASCII character “A” is 65. The decimal
representation for the ASCII character “a” is 97. However the BASIC
module prints 65 for both characters.

>1 REM EXAMPLE PROGRAM

>10 PRINT ASC(a)

>20 PRINT ASC(A)

READY

>RUN

65

65

READY

>

Do not use special ASCII characters with a decimal value greater than 127.

In addition, you can evaluate individual characters in a defined ASCII
string with the ASC operator. When you use the ASC operator, the $(expr)
denotes what string you want to access. The expression after the comma
selects an individual character in the string. In this example, the first
character in the string is selected. The decimal representation for the
ASCII character T is 84. String character position 0 is invalid.

>5 STRING 1000,40

>10 $(1) =“THIS IS A STRING”

>20 PRINT $(1)

>30 PRINT ASC($(1),1)

>40 END

READY

>RUN

THIS IS A STRING

84

READY

>

String Operators

Chapter
Expressions, Variables and Operators

9

9 -15

The numbers printed in this example represent the ASCII characters A
through L.

>NEW

>1 REM EXAMPLE PROGRAM

>5 STRING 1000,40

>10 $(1)=“ABCDEFGHIKJL”

>20 FOR X = 1 TO 12

>30 PRINT ASC($(1),X),

>40 NEXT X

>50 END

 READY

>RUN

65 66 67 68 69 70 71 72 73 75 74 76

READY

>

You can also use the ASC operator to change individual characters in a
defined string. In general, the ASC operator lets you manipulate individual
characters in a string.

>NEW

>1 REM EXAMPLE PROGRAM

>5 STRING 1000,40

>10 $(1) = “ABCDEFGHIJKL”

>20 PRINT $(1)

>30 ASC($(1),1) = 75 : REM DECIMAL EQUIVALENT OF K

>40 PRINT $(1)

>50 ASC($(1),2) = ASC($(1),3)

>60 PRINT $(1)

READY

>RUN

ABCDEFGHIJKL

KBCDEFGHIJKL

KCCDEFGHIJKL

READY

>

Chapter
Expressions, Variables and Operators

9

9 -16

CHR

Use the CHR operator to convert a numeric expression to an ASCII
character.

>PRINT CHR(65) Result: A

Like the ASC operator, the CHR operator also selects individual characters
in a defined ASCII string. The expressions within the parentheses that
follow the CHR operator have the same meaning as the expressions in the
ASC operator.

>NEW

>1 REM EXAMPLE PROGRAM

>5 STRING 1000,40

>10 $(1) = “THE BASIC MODULE”

>20 FOR I = 1 TO 16 : PRINT CHR($(1),I),: NEXT I

READY

>RUN

THE BASIC MODULE

READY

>

Unlike the ASC operator, you cannot assign the CHR operator a value.
A statement such as CHR ($(1),1)= H is invalid and generates an ERROR:

BAD SYNTAX message,. When this error occurs the BASIC module enters
Command mode. Use the ASC operator to change a value in a string, or
use the string support CALL 65 (page 12 -64) - replace string in a string.

Important: Use CHR only in a PRINT statement (page 11 -29).
You cannot use the CHR in a DATA statement (page 11 -6).

Chapter
Expressions, Variables and Operators

9

9 -17

The BASIC module contains a complete set of special function operators.
These operators manipulate the I/O hardware and memory addresses of the
BASIC module.

and @

Use the # and @ operators to direct communications. Communication
takes place through port PRT1 when you program the @ operator.

>10 A = GET@

Result: Next character in PRT1 input buffer assigned to variable A.

Communication takes place through port PRT2 when you program the #
operator.

>10 A = GET#

Result: Next character in PRT2 input buffer is assigned to variable A.

The absence of either the # or @ operators indicates that communication
should take place through a program port (port PRT1 or port DH485).

EOF

Use the EOF operator to test for an empty input buffer before executing an
input statement or function. This prevents input statements from waiting
indefinitely on empty input buffers. Use the EOF# statement to test for an
empty input buffer for port PRT2. Use the EOF@ statement to test for an
empty input buffer for port PRT1.

>10 REM EXAMPLE PROGRAM

>20 IF (NOT(EOF)) THEN A=GET

>30 REM IF BUFFER NOT EMPTY, READ SINGLE CHARACTER

FREE

Use the system control value FREE to tell you how many bytes of RAM
are available to you. When the current selected program is in RAM, this
relationship is true:

FREE = MTOP - LEN - 511

LEN

Use the system control value LEN to tell you how many bytes of memory
the current program occupies. This is the length of the program and does
not include the size of string, variable or array memory. You cannot assign
LEN a value, you can only read it. A null program (ex. no program)
returns a LEN of 1. The 1 represents the end of program file character.

Special Function Operators

Chapter
Expressions, Variables and Operators

9

9 -18

MTOP

Use the MTOP operator to retrieve the last valid memory address in RAM
that is available to the BASIC module. After reset, the BASIC module
sizes the external memory and assigns the last valid memory address to the
system control value MTOP. The module does not use any external RAM
beyond the value assigned to MTOP. If a CALL 77 (page 13 -6) has not
changed this value, then the last valid BASIC address is 5FFFH (24575).

>PRINT MTOP Result: 24575

>PH0.MTOP Result: 5FFFH

Important: Use CALL 77 to change MTOP. Do not use MTOP = 22000.

CBY

Use the CBY operator to retrieve data from the program or code memory
address location of the BASIC module. You cannot assign CBY a value;
you can only read it. The argument for the CBY operator must be a valid
integer between 0 and 65535 (0FFFFH). If it is not a valid integer, a bad
argument error occurs.

>A = CBY(1000)

Result: The value in the program or code memory address location
1000 is assigned to variable A.

DBY

Use the DBY operator to retrieve or assign data to or from the internal
RAM data memory of the BASIC module. Both the value and the
argument in the DBY operator must be between 0 and 255 inclusive.
This is because there are only 256 internal memory locations in the BASIC
module and one byte can only represent a quantity between 0 and 255
inclusive.

>A = DBY(11)

Result: Value in internal memory location 11 assigned to variable A.
The internal memory location must be between 0 and 255.

>DBY(250) = OCH

Result: Value OCH assigned to internal memory location 250.

Important: Improper use of this operator may cause a malfunction of the
BASIC module.

Important: The DBY operator cannot access the Special Function
Registers (SFR).

Chapter
Expressions, Variables and Operators

9

9 -19

XBY

Use the XBY operator to retrieve or assign data to or from the external
RAM data memory of the BASIC module. The argument for the XBY
operator must be a valid integer between 0 and 65535 (0FFFFH).
The value assigned to the XBY operator must between 0 and 65535 (0 and
0FFFFH) inclusive. If not, a bad argument error occurs.

>A = XBY(0F000H)

Result: Value in external memory location 0F00H assigned to
variable A.

>XBY(4000H) = 1F H

Result: Value 1FH assigned to external memory location 4000H.

Important: Improper use of this operator may cause a malfunction of the
BASIC module.

TIME

Use the TIME operator to retrieve or assign a value to the free running
clock resident in the BASIC module. After reset, time is equal to 0.
CLOCK1 (page 11 -5) enables the free running clock. When you enable
the free running clock, the special function operator TIME increments once
every 5 milliseconds. The units of time are in seconds.

When you assign TIME a value with a LET statement (page 11 -19)
(ex: TIME=100), only the integer portion of TIME is changed.

>CLOCK1 :REM ENABLE FREE RUNNING CLOCK

>CLOCK0 :REM DISABLE FREE RUNNING CLOCK–TIME NOT RESET

>PRINT TIME REM: DISPLAY TIME

READY

>RUN

3.315

>NEW

>TIME = 0 :REM SET TIME = 0

>PRINT TIME :REM DISPLAY TIME

READY

>RUN

.315 (Note: only the integer is changed)

Chapter
Expressions, Variables and Operators

9

9 -20

You can change the fraction portion of TIME by manipulating the contents
of internal memory location 71 (47H). You can do this by using a
DBY(71) operator (page 9 -18). Note that each count in internal memory
location 71 (47H) represents 5 milliseconds of TIME.

>DBY(71) = 0 :REM FRACTION OF TIME = 0

>PRINT TIME

READY

>RUN

0

>NEW

>DBY(71) = 3 :REM FRACTION OF TIME = 3*5ms = 15 ms

>PRINT TIME

READY

>RUN

1.5 E-2

Only the integer portion of TIME changes when a value is assigned.
This allows you to generate accurate time intervals. For example, to create
an accurate 12-hour (43200 seconds) clock use an ONTIME statement
(page 11 -25). When the TIME interrupt occurs, the statement TIME 0 is
executed, but the millisecond counter is not re-assigned a value.
If interrupt latency exceeds 5 milliseconds, the clock remains accurate.

Commands

10What’s Next?

10 Chapter

10 -1

Commands

BASIC commands are programming instructions that you execute during

the Command mode except for Ctrl + C . Ctrl + C takes you from

Run mode to Command mode. You typically use these commands to
perform some type of program maintenance. You can also execute
statements (Chapter 11) and calls (Chapters 12 and 13) from the command
line.

This chapter describes: On page:

BRKPNT 10 -2

CONT 10 -3

CTRL C 10 -4

CTRL Q 10 -5

CTRL S 10 -6

EDIT 10 -7

ERASE 10 -8

LIST 10 -9

NEW 10 -10

NULL 10 -10

PROG 10 -11

PROG1 10 -12

PROG2 10 -13

RAM 10 -15

REN 10 -16

ROM 10 -17

RROM 10 -18

RUN 10 -19

SNGLSTP 10 -20

VER 10 -21

XFER 10 -21

command line calls 10 -22

what’s next? 10 -22

What’s in This Chapter?

Chapter

Chapter
Commands

10

10 -2

Use the BRKPNT command to set a program break point at the line
number you specify with this command. Program execution stops just
before the line number you specified. If the line number is zero, the break
point is disabled. After the break point is reached, you can examine
variables by using PRINT statements. You can also modify the variables
by using assignment statements. Continue from the break point by using
the CONT command (page 10 -3.) Once the break point is reached, it is
disabled. To stop at the same place twice, set the break point twice. The
BRKPNT command works only on programs executing from RAM. It
does not stop a program executing from ROM.

Syntax

BRKPNT line number Return

Example

>10 D=0 : SU=0 : AV=0

>20 REM GET 100 DATUM POINTS

>30 FOR I=1 TO 100

>40 REM GET ANOTHER DATUM

>50 GOSUB 140

>60 REM SUM THE DATA

>70 GOSUB 170

>80 NEXT I

>90 REM AVERAGE THE DATA

>100 GOSUB 200

>110 REM PRINT RESULT

>120 PRINT “THE AVERAGE VALUE IS ”,AV

>130 END

>140 REM THIS SUBROUTINE GENERATES RANDOM DATA

>150 D=RND

>160 RETURN

>170 REM THIS SUBROUTINE SUMS THE DATA

>180 SU=SU+D

>190 RETURN

>200 REM THIS SUBROUTINE AVERAGES THE DATA

>210 AV=SU/I

>220 RETURN

READY

>BRKPNT 160

Breakpoint enabled.

READY

>RUN

STOP – IN LINE 160

READY

BRKPNT

Chapter
Commands

10

10 -3

Use the CONT command to resume execution of a program stopped by a

Ctrl + C (page 10 -4), BRKPNT(page 10 -2), SNGLSTP (page

10 -20), or a STOP (page 11 -36). If you stop a program by pressing

Ctrl + C on the console device or by executing a STOP statement,

you can resume execution of the program by typing CONT. Between
stopping and re-starting the program you may display the values of
variables or change the values of variables. However, you cannot continue
if you modify the program during the STOP or after an error.

Important: Ctrl + C clears all input and output buffers.

Syntax

CONT Return

Example

>10 FOR I = 1 TO 10000

>20 PRINT I

>30 NEXT I

>40 END

 READY

>RUN

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 Ctrl + C
STOP – IN LINE 30

READY

>CONT

20

21

22

Notice that after Ctrl + C is pressed and I is printed the value of

I is 20. The value of I is incremented several times before Ctrl + C

is detected.

CONT

Chapter
Commands

10

10 -4

Use the Ctrl + C command to stop execution of the current program

and return the BASIC module to the Command mode. In some cases you
can continue execution of the program using a CONT (page 10 -3).

Important: Ctrl + C clears all input and output buffers.

Use CALL 19 (page 12 -12) to disable Ctrl + C .

Use CALL 18 (page 12 -11) to re-enable Ctrl + C .

Syntax

 Ctrl + C

Example

>1 REM EXAMPLE PROGRAM

>10 FOR I = 1 TO 10000

>20 PRINT I

>30 NEXT I

>40 END

>RUN

 1

 2

 3

 4

 5 - Ctrl + C
STOP - IN LINE 20

READY

>PRINT I

 27

>I = 10

>CONT

 10

 11

 12

Notice that after Ctrl + C is pressed and I is printed the value of

I is 27. The value of I is incremented several times before Ctrl + C

is detected.

CTRL-C

Chapter
Commands

10

10 -5

If software handshaking is enabled on the program port (page 2 -4), use the

Ctrl + Q command to restart a LIST command (page 10 -9) or

PRINT output (page 11 -29) that is interrupted by Ctrl + S

(page 10 -6) .

Syntax

Ctrl + Q

Example

> LIST

1 REM EXAMPLE PROGRAM

10 A = 1

20 DO

Ctrl + S
.

.

.

Ctrl + Q

30 A = A+1

40 PRINT A

50 WHILE A < 20

READY

>

In this example, the output is suspended when Ctrl + S is pressed.

The output is continued after Ctrl + Q is pressed.

CTRL-Q

Chapter
Commands

10

10 -6

 If software handshaking is enabled on the program port (page 2 -4), use

the Ctrl + S command to interrupt the scrolling of a BASIC program

during the execution of a LIST command. Ctrl + S stops output from

the transmitting port if you are running a program. In this case XOFF

Ctrl + S operates as follows:

 XOFF only operates on PRINT statements (page 11 -29).

 When received during a PRINT, data output is suspended immediately,
but program execution continues until the buffer is full and then the
program is suspended.

 When received at any other time, the program continues until
encountering a PRINT statement. At this time data output is suspended.
The program continues to fill the output buffer until the buffer is full
and then the program is suspended.

 XON Ctrl + Q (page 10 -5) resumes data output operation.

Important: Ctrl + S only works if you have enabled software

handshaking on the program port. You enable software handshaking
through the MODE statement (page 11 -20). Software handshaking is
enabled by default.

Syntax

Ctrl + S

Example

>10 A = 1

>20 DO

Ctrl + S

.

.

.

Ctrl + Q
>30 A = A+1

>40 PRINT A

>50 WHILE A < 20

READY

In this example, the output is suspended when Ctrl + S is pressed.

The output is continued after Ctrl + Q is pressed.

CTRL-S

Chapter
Commands

10

10 -7

Use the EDIT command to access the BASIC line editor. Use this editor to
edit a line of the current program in RAM.

Operation Function Key Strokes

delete use the delete operation to delete the
character at the cursor position

Ctrl + D

exit use the exit operation(s) to exit the
editor with or without saving the
changes

 - exits the editor and

replaces the old line with the edited line

 - exits the editor without

 saving any changes made to the line

Ctrl + Q

Ctrl + C

insert use the insert operation to insert text
at the current cursor position

Important: When you use the insert
operation, all text to the right of the
cursor disappears until you press the
second .

total line length is 79 characters.

Ctrl + A

Important: You must press a second
 to terminate the insert

command

Ctrl + A

Ctrl + A

move use the move operation to provide
right/left cursor control - moves the cursor one

space to the right

 - moves the cursor one space

to the left

Backspace

Space

replace use the replace operation to replace
the character at the current cursor
position

press the key that corresponds to the
character that replaces the character at the
current cursor position

retype use the retype operation to copy the
current line of text and insert it at the
line following the current line.
The cursor moves to the first
character on the new line

Return

Syntax

EDIT line number Return

Example

>EDIT 150

Result: Displays program line number 150 for editing.

EDIT

Chapter
Commands

10

10 -8

Use the ERASE command to delete the last BASIC program stored in
EEPROM through a PROG command (page 10 -11).

Syntax

ERASE Return

Example

>ERASE

>ERASED ROM 13

Result: The last program stored in EEPROM (ROM 13 in this
example) is erased.

ERASE

Chapter
Commands

10

10 -9

Use the LIST command to print the program to the console device.
Spaces are inserted after the line number and before and after statements.
This helps in the debugging of BASIC module programs. You can

terminate the listing of a program at any time by pressing Ctrl + C

(page 10 -4) on the console device. You can interrupt and continue the

listing using Ctrl + S (page 10 -6) and Ctrl + Q (page 10 -5).

Important: Ctrl + C terminates the listing if Ctrl + C checking

is enabled. Ctrl + S halts the listing until Ctrl + Q is pressed if

software handshaking in enabled.

Syntax

Command variation Description

LIST Return
lists the entire program

LIST ln num Return
lists the line number specified to the end
of the program

LIST ln num – ln num Return
lists the program from the first designated
line number to the second designated
line number

Important: you must separate the two
line numbers with a dash (–)

Use the LIST@ command to print the program to the device attached to
port PRT1. Use the LIST# command to print the program to the device
attached to port PRT2. You must configure the port parameters to match
your particular list device. These parameters (communication rate, parity,
stop bits, and so on) can be set using the MODE statement (page 11 -20).

Example
>LIST

10 PRINT “LOOP PROGRAM”

20 FOR I = 1 TO 3

30 PRINT I >LIST 20-40

40 NEXT I 20 FOR I = 1 TO 3

50 END 30 PRINT I

READY 40 NEXT I

READY

>LIST 30

30 PRINT I

40 NEXT I

50 END

READY

LIST

Chapter
Commands

10

10 -10

Use the NEW command to delete the program and all variables currently
stored in RAM. In addition, all variables are set equal to ZERO; all strings
and all BASIC evoked interrupts are cleared. The free running clock,
string allocation, and internal stack pointer values are not affected.

Syntax

NEW Return

Example

>NEW

>LIST

READY

>

Use the NULL command to set how many null characters (00H) you want
the BASIC module to output after a carriage return in a print statement
(page 11 -29). After initialization this value is set to 0. Most printers
contain a RAM buffer that eliminates the need to output null characters
after a carriage return.

Syntax

NULL (integer) Return

Example

>NULL (10)

NEW

NULL

Chapter
Commands

10

10 -11

Important: Before you attempt to program an EEPROM, read the PROG,
PROG1, PROG2, and MODE sections of this chapter. See also CALL 78
(page 13 -8)

Use the PROG command to program the resident EEPROM with the
current program in RAM. BASIC module cannot program EPROMs;
however, it can read them. After you type PROG, the BASIC module
displays the number the program occupies in the EEPROM FILE.
Programming only takes a few seconds.

Important: Be sure you have selected the program you want to save
before using the PROG command. Your BASIC module does not
automatically copy the RAM program to EEPROM. If an error occurs
during EEPROM programming, the message ERROR: Programming

sequence failure is displayed.

Important: If you exceed the available EEPROM space, you cannot
continue programming until it is erased. Use the ERASE command (page
10 -8) to erase the last program stored in EEPROM. Be sure to use
CALL 81 (page 13 -10) or CALL 82 (page 13 -11) to determine memory
space prior to programming EEPROM.

Syntax

PROG Return

Example

>LIST

1 REM EXAMPLE PROGRAM

10 FOR I=1 TO 10

20 PRINT I

30 NEXT I

40 END

READY

>PROG

ROM 12

PROGRAMMING SEQUENCE WAS SUCCESSFUL

READY

>ROM 12

>LIST

1 REM EXAMPLE PROGRAM

10 FOR I=1 TO 10

20 PRINT I

30 NEXT I

40 END

READY

Result: The program placed in the EEPROM is the 12th program stored.

PROG

Chapter
Commands

10

10 -12

Important: Before you attempt to program an EEPROM, read the PROG,
PROG1, PROG2, and MODE sections of this chapter. Also see CALL 78
(page 13 -8). If you have already used a PROG2, PROG1 supercedes it.

Use the PROG1 command to program the resident EEPROM with port
information for all three ports as well as store MTOP (page 9 -18)
information. At module power up, the BASIC module reads this
information and initializes MTOP and all three serial ports. The sign-on
message is sent to the console immediately after the module completes its
reset sequence. If the communication rate on the console device changes,
you must re-program the EEPROM to make the module compatible with
the new console. Re-program by changing the appropriate port or MTOP
information, then execute PROG1 again.

The flowchart on page 10 -14 shows the BASIC module operation from a
power-up condition using PROG1 and PROG2, or battery backed RAM.

Syntax

PROG1 Return

Example

READY

>PROG1

PROGRAMMING SEQUENCE WAS SUCCESSFUL

PROG1

Chapter
Commands

10

10 -13

Important: Before you attempt to program an EEPROM, read the PROG,
PROG1, PROG2, and MODE sections of this chapter. Also see CALL 78
(page 13 -8). If you have already used a PROG1, PROG2 supercedes it.

Note, the PROG2 command does not transfer the RAM program to
EEPROM. The PROG2 command enables the first program in EEPROM
to be run at each power up. The PROG2 command is the same as the
PROG1 command except the module immediately begins executing the
first program stored in the resident EEPROM instead of signing on and
entering the Command mode.

Use the PROG2 command to program the resident EEPROM with port
information for all three ports as well as store MTOP (page 9 -18)
information. At module power up, the BASIC module reads this
information and initializes MTOP and all three serial ports. The module
immediately begins executing the program stored in RAM. Otherwise, if
there is not a program in RAM, it executes the first program stored in the
EEPROM. Re-program by changing the appropriate port or MTOP
information, then execute PROG2 again.

You can use the PROG2 command to RUN (page 10 -19) a program on
power up without connecting to a console. Once you use PROG2 (and JW4
is not in the default position (page 1 -6)), the module powers up and
executes a RUN command if a program is in RAM. If there is not a
program in RAM, but there is a program in ROM, the module powers up
and executes a RROM command. If there is not a program in RAM or
ROM, the module powers up in the Command mode. This feature also
allows you to write a special initialization sequence in BASIC and generate
a custom sign-on message for specific applications. PROG2 does not alter
the first program in the memory module.

Important: The PROG2 command does not cause the BASIC module to
RUN at power up if PRT1 default communications are selected via JW4
(page 1 -6).

Important: PROG2 only executes ROM1 if no program is in RAM.

The flowchart on page 10 -14 shows the BASIC module operation from a
power-up condition using PROG1 and PROG2, or battery backed RAM.

Syntax

PROG2 Return

Example
READY

>PROG2

PROGRAMMING SEQUENCE WAS SUCCESSFUL

PROG2

Chapter
Commands

10

10 -14

Start

Erase RAMIs
battery back-up

enabled? program

Has
PROG1 or PROG2

been executed?

Is
battery backed

RAM MTOP and

Print sign-on
message

Enter command
mode

Has
PROG2 been

executed

Is
user EEPROM

checksum correct?

Power turn–on

No

Yes

No

Yes

Erase MTOP and port
information in

battery backed RAM

Copy EEPROM MTOP and
port information to

battery backed RAM

Yes

port information
valid?

Store default MTOP and
port information in

battery backed RAM

No

Yes

Initialize ports using
battery backed RAM

No Print sign-on message

Print checksum error message

Enter command mode

Yes
Execute ROM 1

Is
RAM program

present?
Yes

Execute RAM program

No

No

Chapter
Commands

10

10 -15

Use the RAM command to tell the BASIC module interpreter to select the
current program out of RAM. Use a LIST command (page 10 -9) to
display and a RUN command (page 10 -19) execute the current program.

The execution time for a program running in RAM is the same as a
program running from ROM. There is no performance improvement on a
BASIC program by moving it to RAM.

Important: RAM space is limited to 24K bytes. Use this formula to
calculate the available user RAM space:

Available user RAM = MTOP (see page 9 -18)-H

H = LEN + S + 6*A + 8*V + 512

Where:

LEN system control value that contains current RAM program length
(see also page 9 -17)

S number of bytes allocated for strings (first value in the STRING instruction)

A sum of all (array sizes + 1)

V sum of all variable names used (including each array name)

Syntax

RAM Return

Example

READY

>RAM

RAM

Tip

Chapter
Commands

10

10 -16

Use the REN command to renumber program lines.

Important:

 REN command updates the destination of GOSUB, GOTO, ONERR,
ONTIME and ON GOTO statements (Chapter 11).

 If the target line number does not exist, or if there is insufficient
memory to complete the task, no lines are changed and the message
RENUMBER ERROR appears on the console screen.

 Because the REN command uses the same RAM for renumbering as it
does for variable and program storage, available RAM may be
insufficient in large programs. Renumber your program periodically
and in segments during development.

Syntax

This command variation: Renumbers the program:

REN Return
from the beginning of the program. New line
numbers begin at 10 and increment by 10.

REN NUM Return
from the beginning of the program. New line
numbers begin at 10 and increment by NUM.

REN NUM1, NUM2 Return
from the beginning of the program. New line
numbers begin with NUM1 and increment by NUM2.

REN NUM1, NUM2, NUM3 Return
starting at NUM2. New line numbers begin with
NUM1 and increment by NUM3.

Examples

>REN

Result: Renumbers the entire program. First new line number is 10.
Line numbers increment by 10.

>REN 20

Result: Renumbers the entire program. The first new line number is
10. Line numbers increment by 20.

>REN 300,50

Result: Renumbers the entire program. The first new line number is
300. Line numbers increment by 50.

>REN 1000,900,20

Result: Renumbers the program from line 900 on up. Line number
900 becomes line number 1000. Any following line numbers
increment by 20.

REN

Chapter

Chapter
Commands

10

10 -17

Use the ROM command to tell the BASIC module interpreter to select the
current program out of EEPROM or EPROM. Use a LIST command (page
10 -9) to display and a RUN command (page 10 -19) to execute the
current program.

The execution time for a program running in ROM is the same as a
program running from RAM. There is no performance improvement on a
BASIC program by moving it to RAM.

Important: Your BASIC module can execute and store up to 255
programs in EEPROM depending on the size of the programs and the
capacity of the EEPROM. The programs are stored in a sequence string,
referred to as the EEPROM file, in EEPROM for retrieval and execution.

When you enter ROM integer, the BASIC module selects that program out
of EEPROM memory and makes it the current program. If no integer is
typed after the ROM command (ex. ROM) the module defaults to ROM 1.
Since the programs are stored in sequence in EEPROM, the integer
following the ROM command selects the program you want to run or list.
If you attempt to select a program that does not exist (ex. you type ROM 8

and only 6 programs are stored in the EEPROM) the message ERROR:

PROM MODE is displayed.

The module does not transfer the program from EEPROM to RAM when
you select the ROM mode. If you attempt to alter a program in the ROM
mode by typing in a line number, the message ERROR: PROM MODE is
displayed. The XFER command (page 10 -21) allows you to transfer a
program from EEPROM to RAM for editing purposes.

Important: When you transfer programs from EEPROM to RAM you lose
the previous RAM contents.

Since the ROM command does not transfer a program to RAM, it is
possible to have different programs in ROM and RAM simultaneously.
You can move back and forth between the two modes when in Command
mode. If you are in Run mode, you can change back and forth using
CALLs 70 (page 13 -2), 71 (page 13 -3), and 72 (page 13 -4). You can
also use all of the RAM for variable storage if the program is stored in
EEPROM. The system control value MTOP (page 9 -18) always refers to
RAM. The system control value LEN (page 9 -17) refers to the program
currently in RAM or ROM.

Syntax

ROM integer Return

Example
READY

>ROM 1

ROM

Tip

Chapter
Commands

10

10 -18

Use the RROM command to tell the BASIC module interpreter to select
the current program out of EEPROM or EPROM and then execute the
program. This command is equivalent to typing ROM (page 10 -17) and
then RUN (page 10 -19).

The execution time for a program running in ROM is the same as a
program running from RAM. There is no performance improvement on a
BASIC program by moving it to RAM.

Important: Your BASIC module can execute and store up to 255
programs in EEPROM depending on the size of the programs and the
capacity of the EEPROM. The programs are stored in a sequence string,
referred to as the EEPROM file, in EEPROM for retrieval and execution.

When you enter RROM integer, the BASIC module selects that program
out of EEPROM memory, makes it the current program, and starts program
execution. If no integer is typed after the RROM command (example:
RROM) the module defaults to RROM 1. Since the programs are stored in
sequence in EEPROM, the integer following the RROM command selects
the program you want to run or list. If you attempt to select a program that
does not exist (ex. you type RROM 8 and only 6 programs are stored in the
EEPROM) the message ERROR: PROM MODE is displayed.

The module does not transfer the program from EEPROM to RAM when
ROM mode is selected. If you attempt to alter a program in ROM mode
by typing in a line number, the message ERROR: PROM MODE is displayed.
The XFER command (page 10 -21) allows you to transfer a program from
EEPROM to RAM for editing purposes.

Important: When you transfer programs from EEPROM to RAM you lose
the previous RAM contents.

Since the RROM command does not transfer a program to RAM, it is
possible to have different programs in ROM and RAM simultaneously.
You can move back and forth between the two modes when in Command
mode. If you are in Run mode, you can change back and forth using
CALLs 70 (page 13 -2), 71 (page 13 -3), and 72 (page 13 -4). You can
also use all of the RAM for variable storage if the program is stored in
EEPROM. The system control value MTOP (page 9 -18) always refers to
RAM. The system control value LEN (page 9 -17) refers to the program
currently in RAM or ROM.

Syntax

RROM integer Return

Example

READY

>RROM 2

RROM

Tip

Chapter
Commands

10

10 -19

Use the RUN command to set all variables equal to zero, clear all BASIC
evoked interrupts, and begin program execution with the first line number
of the selected program. The RUN, CONT (page 10 -3), and RROM
(page 10 -18) commands and the GOTO statement (page 11 -14) are the
only ways you can place the BASIC module interpreter into Run mode
from Command mode. Terminate program execution at any time by

pressing Ctrl + C (page 10 -4) on the console device. As long as

you have not used CALL 19 (page 12 -12) to disable Ctrl + C .

Important: Some BASIC interpreters allow a line number to follow the
RUN command (example: RUN 100). The BASIC module does not
permit this variation on the RUN command. Execution begins with the
first line number. To obtain a function similar to the RUN ln num
command, use the GOTO ln num statement in the Command mode.

Syntax

RUN Return

Example

>1 REM EXAMPLE PROGRAM

>10 FOR I = 1 TO 3

>20 PRINT I

>30 NEXT I

>40 END

>RUN

 1

 2

 3

READY

>

RUN

Chapter
Commands

10

10 -20

Use the SNGLSTP command to initiate single-step program execution.
If the number you specify with this command is zero, single-step execution
is disabled. If the number is not zero, a break point is set before each line
in the program. Start the program with the RUN command (page 10 -19).
After each stop, type CONT (page 10 -3) to execute the next line.
You can inspect variables or assign variables at each break point.
SNGLSTP works only on programs executing from RAM. It does not stop
a program executing from ROM.

Syntax

SNGLSTP integer Return

Example
>10 FOR I = 1 TO 5

>20 PRINT I

>30 NEXT I

>40 PRINT “PASSED FOR - NEXT LOOP”

>50 PRINT “THIS IS THE END”

>60 END

READY

>SNGLSTP 20

SINGLE STEP ENABLED

READY

>RUN

STOP - LINE 20

READY

>CONT

1

STOP - LINE 30

READY

>CONT

STOP - LINE 20

READY

>CONT

2

STOP - LINE 30

READY

>SNGLSTP 0

SINGLE STEP DISABLED

READY

>CONT

3

4

5

PASSED FOR - NEXT LOOP

THIS IS THE END

READY

SNGLSTP

Chapter
Commands

10

10 -21

Use the VER command to print the BASIC module sign-on message that
displays the current version of the firmware.

Syntax

VER Return

Example

READY

>VER

PLC BASIC Module-Catalog Number 1771-DB/B

Firmware Revision: A

Allen-Bradley Company, Copyright 1989, 1990, 1991, 1992, 1993 1994

All rights reserved

Use the XFER command to transfer the current selected program in ROM
to RAM and select RAM mode. After the XFER command executes, you
can edit the program in the same way you edit any RAM program.

Important: The XFER command clears existing RAM programs.

Syntax

XFER Return

Example

READY

>XFER

VER

XFER

Chapter
Commands

10

10 -22

These calls can only be executed from the command line. Use these calls
to cause a function to occur within the BASIC module.

CALL Description Page

31 display PRT2 port parameters 12 -21

73 battery-backed RAM disable 13 -5

74 battery-backed RAM enable 13 -5

77 protected variable storage 13 -6

81 user PROM check and description 13 -10

82 check user memory module map 13 -11

83 display DH485 port setup 13 -11

94 display current PRT1 port setup 13 -32

101 upload user (E)EPROM code to host 13 -35

103 print PRT1 transmit buffer and pointer 13 -36

104 print PRT1 receive buffer and pointer 13 -37

109 print the argument stack 13 -44

110 print the PRT2 transmit buffer and pointer 13 -45

111 print the PRT2 receive buffer and pointer 13 -46

Statements

11

Command Line Calls

What’s Next?

11 Chapter

11 -1

Statements

BASIC statements are programming instructions that control program flow
or manipulate I/O or memory. Every statement begins with a line number,
followed by a statement body, and terminated with a carriage return (CR)
or a colon (:) in case of multiple statements per line number. You execute
statements automatically within a BASIC program during Run mode. You
can also enter these statements from the command line in Command mode
to test/evaluate the execution of the statement. Chapter 7 gives you an
overview of how to use the different statements within your BASIC
program.

This chapter describes: On page: This chapter describes: On page:

CALL Ch. 12 & 13 LET 11 -19

CLEAR 11 -2 MODE 11 -20

CLEARI 11 -3 NEXT 11 -21

CLEARS 11 -3 ONDF1 11 -22

CLOCK0 11 -4 ONERR 11 -23

CLOCK1 11 -5 ON-GOSUB 11 -24

DATA 11 -6 ON-GOTO 11 -26

DIM 11 -7 ONTIME 11 -25

DO-UNTIL 11 -8 PH0. and PH1. 11 -27

DO-WHILE 11 -9 POP 11 -28

END 11 -10 PRINT 11 -29

FOR-TO-(STEP)-NEXT 11 -11 PUSH 11 -30

GET 11 -12 READ 11 -31

GOSUB 11 -13 REM 11 -32

GOTO 11 -14 RESTORE 11 -32

IDLE 11 -14 RETI 11 -33

IF-THEN-ELSE 11 -15 RETURN 11 -34

INPL 11 -16 ST@ 11 -35

INPS 11 -16 STOP 11 -36

INPUT 11 -17 STRING 11 -37

LD@ 11 -18 what’s next? 11 -38

What’s in This Chapter?

Chapter

Chapter
Statements

11

11 -2

Use the CLEAR statement to set all variables equal to 0 and reset all
BASIC evoked interrupts and stacks. This means that after you execute the
CLEAR statement, you must execute an ONTIME statement (page 11 -25)
before the module acknowledges the internal timer interrupts. ERROR
trapping with the ONERR statement (page 11 -23) does not re-occur until
you execute an ONERR ln num statement.

The CLEAR statement does not affect the free running clock that is
enabled by the CLOCK1 statement (page 11 -5). CLOCK0 (page 11 -4)
is the only module statement that can disable the free running clock.
Nor does CLEAR reset the memory that has been allocated for strings, so
it is not necessary to re-enter the STRING expr, expr statement (page
11 -37) to re-allocate memory for strings after executing the CLEAR
statement. In general, use CLEAR to erase all variables.

You can also use CLEAR in Command mode.

Syntax
CLEAR

Example
>CLEAR
>LIST
1 REM EXAMPLE PROGRAM
10 DIM A(4)
20 DATA 10,20,30,40
30 FOR I=0 TO 3
40 READ A(I)
50 NEXT I
60 FOR J=O TO 3
70 PRINT A(J)
80 NEXT J
READY
>PRINT A(1),I,J
 0 0 0
>RUN
 10
 20
 30
 40
READY
>PRINT A(1),I,J
 20 4 4
>CLEAR
>PRINT A(1),I,J
 0 0 0

CLEAR

Chapter
Statements

11

11 -3

Use the CLEARI statement to clear all of the BASIC evoked interrupts.
The ONTIME (page 11 -25) interrupt is disabled after you execute the
CLEARI statement.

The CLEARI statement does not affect the free running clock that is
enabled by the CLOCK1 statement (page 11 -5). CLOCK0 (page 11 -4)
is the only module statement that can disable the free running clock.

You can use this statement to selectively disable ONTIME interrupts
during specific sections of your BASIC program. You must execute the
ONTIME statement again before the specific interrupts are enabled.

You can also use CLEARI in Command mode.

Important: This statement does not clear CALL 32, CALL 16 or ONDF1.

Syntax
CLEARI

Example
READY
>CLEARI

Use the CLEARS statement to reset all of the stacks. The control,
argument, and internal stacks all reset to their initialization values.
You can use this command to reset the stacks if an error occurs in a
subroutine.

You can also use CLEARS in Command mode or if you wish to exit a loop
(i.e., GOSUB, DO WHILE, FOR NEXT, etc.).

Syntax
CLEARS

Example
READY
>CLEARS

CLEARI

CLEARS

Chapter
Statements

11

11 -4

Use the CLOCK0 (zero) statement to disable or turn off the free running
clock resident on the BASIC module. After you execute CLOCK0, the
special function operator TIME (page 9 -19) no longer increments.
CLOCK0 is the only module statement that can disable the free running
clock. CLEAR (page 11 -2) and CLEARI (page 11 -3) do not disable
the free running clock, only its associated ONTIME interrupt (page
11 -25).

Important: CLOCK0 and CLOCK1 (page 11 -5) are independent of the
clock/calendar.

You can also use CLOCK0 in Command mode.

Syntax
CLOCK0

Example
READY
>CLOCK0

CLOCK0

Chapter
Statements

11

11 -5

Use the CLOCK1 statement to enable the free running clock resident on
the BASIC module. The special function operator TIME (page 9 -19)
increments once every 5 milliseconds after you execute CLOCK1.
CLOCK1 uses an internal timer to generate an interrupt once every
5 milliseconds. Because of this, the special function operator TIME has a
resolution of 5 milliseconds. The special function operator TIME counts
from 0 to 65535.995 seconds. After reaching a count of 65535.995
seconds TIME overflows back to a count of 0. The interrupts associated
with CLOCK1 cause the module programs to run at about 99.6% of normal
speed. This means that the interrupt handling for the free running clock
uses about 0.4% of the total CPU time.

Important: This does not include additional overhead for ONTIME user
interrupt handling execution.

Syntax
CLOCK1

Example
>10 TIME = 0
>15 DBY(71) = 0 :REM RESET NONINTEGER PORTION OF TIME
>20 CLOCK1
>30 ONTIME 2,100
>40 DO
>50 WHILE TIME < 10
>60 END
>100 PRINT “TIMER INTERRUPT AT – ”,TIME,“ SECONDS”
>110 ONTIME TIME+2,100
>120 RETI
READY
>RUN

TIMER INTERRUPT AT – 2.01 SECONDS
TIMER INTERRUPT AT – 4.015 SECONDS
TIMER INTERRUPT AT – 6.01 SECONDS
TIMER INTERRUPT AT – 8.01 SECONDS
TIMER INTERRUPT AT – 10.01 SECONDS

CLOCK1

Chapter
Statements

11

11 -6

Use the DATA statement to specify the expressions that you can retrieve
with a READ statement (page 11 -31). If you use multiple expressions per
line, you must separate them with a comma.

Every time a READ statement is encountered the next consecutive
expression in the DATA statement is evaluated and assigned to the variable
in the READ statement. You can place DATA statements anywhere within
a program. They are not executed and do not cause an error.
DATA statements are chained and appear as one large DATA statement.
If at anytime all the data is read and you execute another READ statement,
the program terminates and the message ERROR: NO DATA – IN LINE XX

prints to the console device. The module returns to Command mode.

Important: You cannot use the CHR operator (page 9 -16) in a DATA
statement.

See also RESTORE (page 11 -32)

Syntax
DATA

Example
>LIST
1 REM EXAMPLE PROGRAM
10 DIM A(4)
20 DATA 10,ASC(A),ASC(C),35.627
30 FOR I=0 TO 3
40 READ A(I)
50 NEXT I
60 FOR J=O TO 3
70 PRINT A(J)
80 NEXT J

READY
>RUN
 10
 65
 67
 35.627

DATA

Chapter
Statements

11

11 -7

Use the DIM statement to reserve storage for arrays. The storage area is
first assumed to be zero. Arrays in the BASIC module may have only one
dimension and the size of the dimensioned array may not exceed 254
elements.

Once you dimension a variable in a program you may not re-dimension it.
An attempt to re-dimension an array causes an array size error and the
module enters the Command mode.

If you use an array variable that you did not dimension by a DIM
statement, BASIC assigns a default value of 10 to the array size.
All arrays are set equal to zero when you execute the RUN command (page
10 -19), NEW command (page 10 -10) or the CLEAR statement (page
11 -2).

The number of bytes allocated for an array is six times the array size plus
one (6 ∗ (array size + 1)). For example, the array A (100) requires 606 (6
* (100+1)) bytes of storage. Memory size usually limits the size of a
dimensioned array.

Important: If using strings you must define them in your program with
the STRING statement (page 11 -37) before you define arrays with the
DIM statement.

Syntax
DIM

Example
>1 REM EXAMPLE PROGRAM
>10 DIM A(25), C(15), A1(20)

Error on attempt to re-dimension array:

>1 REM EXAMPLE PROGRAM
>10 A(5) = 10 :REM BASIC ASSIGNS DEFAULT OF 10 TO ARRAY A
>20 DIM A(5) : REM ARRAY RE–DIMENSION ERROR
READY
>RUN
ERROR: ARRAY SIZE – IN LINE 20
20 DIM A(5) : REM ARRAY RE–DIMENSION ERROR
–––––––––––––––X
READY
>

DIM

Chapter
Statements

11

11 -8

Use the DO-UNTIL statement to set up loop control within a module
program. All statements between the DO and the UNTIL rel expr are
executed until the relational expression following the UNTIL statement is
true. You can nest DO-UNTIL loops.

The control stack (C-stack) stores all information associated with loop
control. The C-stack is 157 bytes long. DO-UNTIL loops use 3 bytes of
the C-stack.

Do not improperly exit this loop or a C-stack error occurs. See CLEARS
(page 11 -3).

Important: Excessive nesting exceeds the limits of the C-stack, generating
an error, and causing the module to enter Command mode.
For more information see control stack, page 8 -1.

Syntax
DO-UNTIL rel expr

Example

Simple DO-UNTIL Nested DO-UNTIL

>1 REM EXAMPLE PROGRAM >1 REM EXAMPLE PROGRAM
>10 A=0 >10 DO
>20 DO >20 A=A+1
>30 A=A+1 >30 DO
>40 PRINT A >40 C=C+1
>50 UNTIL A=4 >50 PRINT A,C,A*C
>60 PRINT “DONE” >60 UNTIL C=3
>70 END >70 C=0
>RUN >80 UNTIL A=3
1 >90 END
2 >RUN
3 1 1 1
4 1 2 2
DONE 1 3 3
>READY 2 1 2

2 2 4
2 3 6
3 1 3
3 2 6
3 3 9
>READY

DO-UNTIL

Chapter
Statements

11

11 -9

Use the DO-WHILE statement to set up loop control within a module
program. This statement is similar to the DO-UNTIL rel expr (page
11 -8). All statements between the DO and the WHILE rel expr are
executed as long as the relational expression following the WHILE
statement is true. You can nest DO-WHILE statements.

The control stack (C-stack) stores all information associated with loop
control. The C-stack is 157 bytes long. DO-WHILE loops use 3 bytes of
the C-stack. Do not improperly exit this loop or a C-stack error occurs.
See CLEARS (page 11 -3).

Important: Excessive nesting exceeds the limits of the C-stack. An error
occurs and the module enters Command mode. For more information see
control stack, page 8 -1.

Syntax
DO-WHILE rel expr

Example

Simple DO-WHILE Nested DO-WHILE

>10 DO >10 A=0 : C=0
>20 A = A + 1 >20 DO
>30 PRINT A >30 A=A+1
>40 WHILE A < 2 >40 DO
>50 END >45 C=C+1
READY >50 PRINT A,C,A*C
>RUN >60 WHILE C<>3
 1 >70 C=0
 2 >80 WHILE A<4

>90 END
READY
>RUN
1 1 1
1 2 2

 1 3 3
 2 1 2
 2 2 4
 2 3 6

3 1 3
 3 2 6
 3 3 9

4 1 4
4 2 8
4 3 12

DO-WHILE

Chapter
Statements

11

11 -10

Use the END statement to terminate program execution. CONT (page
10 -3) does not operate if you use the END statement to terminate
execution. An ERROR : CAN’T CONTINUE prints to the console.
Always include an END statement to properly terminate a program.

Syntax
END

Example
>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 4
>20 PRINT I,
>30 NEXT I
>40 END

READY
>RUN

 1 2 3 4

END

Chapter
Statements

11

11 -11

Use the FOR-TO-(STEP)-NEXT statement to set up and control program
loops.

If the STEP statement and the value are omitted, the increment value
defaults to 1, therefore; STEP is an optional statement. The NEXT
statement returns the loop to the beginning of the loop and adds the value
of the STEP expr to the current index value. The current index value is
then compared to the limit value of the index.

If the index is less than or equal to the limit, control transfers back to the
statement after the FOR statement. Stepping backward (FOR I = 100 TO 1
STEP –1) is permitted in the BASIC module. The NEXT statement is
always followed by the appropriate variable.

The control stack (C-stack) stores all information associated with loop
control. The C-stack is 157 bytes long. FOR-NEXT loops use 17 bytes of
the C-stack. Do not improperly exit this loop or a C-stack error occurs.
See CLEARS (page 11 -3).

Important: Excessive nesting exceeds the limits of the C-stack, generating
an error, and causing the module to enter Command mode.
For more information see control stack, page 8 -1.

Syntax
FOR expr TO expr STEP expr
.
.
NEXT expr

Example
>5 E=0 : C=10 : D=2
>10 FOR A=E TO C STEP D
>20 PRINT A
>30 NEXT A
>40 END
>RUN

0
2
4
6
8
10

Since E=0, C=10, D=2, and the PRINT statement at line 20 executes 6
times, the values of A that are printed are 0, 2, 4, 6, 8 and 10. A represents
the name of the index or loop counter. The value of E is the starting value
of the index. The value of C is the limit value of the index and the value of
D is the increment to the index.

FOR-TO-(STEP)-NEXT

Chapter
Statements

11

11 -12

Use the GET statement in the Run mode. GET returns a result of zero in
the Command mode. The GET operator reads the console input device.
If a character is available from the console device, the value of the
character is assigned to GET. After GET is read in the program, it is
assigned the value of zero until another character is sent from the console
device.

The GET statement is read only once before it is assigned a value of zero.
This guarantees that the first character entered is always read, independent
of where you place the GET statement in the program. The program port
is buffered with a 256 byte circular transmit queue and 256 byte circular
receive queue.

Use the GET# operator to read port PRT2 and the GET@ operator to read
port PRT1.

Syntax
GET
GET#
GET@

Example
>10 A = GET
>20 IF (A<>0) THEN PRINT A : REM ZERO MEANS NO ENTRY
>30 GOTO 10
>RUN

 65 [A]
 49 [1]
 24 [^X]
 50 [2]

STOP – IN LINE 30
READY
>

GET

Chapter
Statements

11

11 -13

Use the GOSUB statement to cause the BASIC module to transfer control
of the program to the line number the GOSUB statement references.
In addition, the GOSUB statement saves the location of the next statement
after the GOSUB on the C-stack, so that you can perform a RETURN
statement (page 11 -34) to return control to that statement after the
GOSUB executes. You may nest the GOSUB statement.

The control stack (C-stack) stores all information associated with loop
control. The C-stack is 157 bytes long. GOSUB statements use 3 bytes of
the C-stack. Do not improperly exit this subroutine or a C-stack error may
occur. See CLEARS (page 11 -3).

Important: Excessive nesting exceeds the limits of the C-stack, generating
an error, and causing the module to enter Command mode.
For more information see control stack, page 8 -1.

Important: Always use a RETURN (page 11 -34) to exit a GOSUB.
C-stack errors may occur if you do not use a RETURN.

Syntax
GOSUB ln num

Example

Simple Subroutine Nested Subroutine

>10 FOR I = 1 TO 3 >10 FOR I = 1 TO 3
>20 GOSUB 100 >20 GOSUB 100
>30 NEXT I >30 NEXT I
>40 END >40 END
>100 PRINT I >100 REM USER SUBROUTINE HERE
>110 RETURN >105 PRINT I,
READY >110 GOSUB 200
>RUN >120 RETURN
1 >200 REM START OF NESTED SUBROUTINE
2 >210 PRINT I*I
3 >220 RETURN

READY
>RUN
1 1

 2 4
 3 9

GOSUB

Chapter
Statements

11

11 -14

Use the GOTO statement to cause BASIC to transfer control to the line
number you specify. If line number you specify does not exist, the
message ERROR: INVALID LINE NUMBER is printed to the console device
and the BASIC module enters the Command mode.

Unlike the RUN command (page 10 -19), if you execute the GOTO
statement in the Command mode it does not clear the variable storage
space or interrupts. However, if you execute the GOTO statement is in the
Command mode after you edit a line, the module clears the variable
storage space and all BASIC evoked interrupts.

Syntax
GOTO ln num

Example
>1 REM EXAMPLE PROGRAM
>50 GOTO 100

If line 100 exists, this statement causes execution of program to resume at
line 100.

Use the IDLE statement to force the BASIC module to wait until an
interrupt occurs (i.e., ONTIME, ONERR, etc.). Program execution halts
until an ONTIME condition is met. The ONTIME (page 11 -25) interrupt
must be enabled before executing the IDLE command or else the BASIC

module enters a wait forever mode. Ctrl + C (page 10 -4) exits the

IDLE command if Ctrl + C is enabled. (See CALL 18, page 12 -11).

Important: Do not use IDLE while executing background calls (page
7 -6). Background calls do not execute properly if IDLE is running.

Syntax
IDLE

Example
>10 TIME = 0

>20 CLOCK1

>30 ONTIME 2,70

>40 IDLE

>50 PRINT “END OF TEST!!!”

>60 END

>70 PRINT “TIMER INTERRUPT AT - ”,TIME,“SECONDS.”

>80 RETI

READY

>RUN

TIMER INTERRUPT AT - 2.005 SECONDS.

END OF TEST!!!

GOTO

IDLE

Chapter
Statements

11

11 -15

Use the IF-THEN-ELSE statement to set up a conditional test.

If you want to transfer control to different line numbers using the IF
statement, you may omit the GOTO statement. These examples give the
same results:

>20 IF INT(A)<10 THEN GOTO 100 ELSE GOTO 200
or

>20 IF INT(A)<10 THEN 100 ELSE 200

You can replace the THEN statement with any valid BASIC module
statement:

>30 IF A<>10 THEN PRINT A ELSE 10
>30 IF A<>10 PRINT A ELSE 10

You may execute multiple statements following the THEN or ELSE if you
use a colon to separate them:

>30 IF A<>10 THEN PRINT A : GOTO 150 ELSE 10

You may omit the ELSE statement. If you omit the ELSE statement
control passes to the next statement.

>1 REM EXAMPLE PROGRAM
>20 IF A=10 THEN 40
>30 PRINT A

Syntax
IF rel expr THEN valid statement ELSE valid statement

Example
>1 REM EXAMPLE PROGRAM
>10 IF A =100 THEN A=0 ELSE A=A+1

Upon execution of line 10 IF A is equal to 100, THEN A is assigned a
value of 0. IF A does not equal 100, A is assigned a value of A+1.

IF-THEN-ELSE

Chapter
Statements

11

11 -16

Use the INPL statement to read an entire line (up to 254 characters) from
the program port buffer. The line must be stored in a string variable.
The INPL statement reads all characters from the program port until a
carriage return or the 254 character limit is reached, whichever comes first.
INPL does not echo characters read from the program port.

Use the INPL# statement to read an entire line of characters from the PRT2
port buffer. Use the INPL@ statement to read an entire line of characters
from the PRT1 port buffer. Both these statements function like INPL.

Syntax
INPL string_variable

Example
>1 REM EXAMPLE PROGRAM
>10 STRING 270,254 : REM ONE STRING OF < 254 BYTES
>20 INPL $(0) : REM READ LINE FROM PROGRAM PORT
>30 PRINT# $(0) : REM ECHO STRING TO PORT PRT2

Use the INPS statement to read an entire string of characters from the
program port buffer. The INPS statement terminates when the number of
characters you specify is reached. The INPS reads CR, commas, and nulls.
No characters are echoed. The INPS statement is preferred over INPUT
(page 11 -17) or INPL for communications because all ASCII characters
may be significant. INPUT is least desirable because input stops when a
comma or a carriage return is seen. INPL terminates when a carriage
return is seen.

Use the INPS# statement to read an entire string of characters from the
PRT2 port buffer. Use the INPS@ statement to read an entire string of
characters from the PRT1 port buffer. Both these statements function like
the INPS statement.

Syntax
INPS string_variable, number_of_characters

Example
>1 REM EXAMPLE PROGRAM
>100 PRINT, “TYPE P TO PROCEED OR S TO STOP”
>110 REM READ SINGLE CHARACTER FROM PROGRAM PORT
>120 INPS $(0),1
>130 IF ASC($(0),1)= ASC(P) GOTO 500
>140 IF ASC($(0),1)= ASC(S) GOTO 700
>150 GOTO 100

INPL

INPS

Chapter
Statements

11

11 -17

Use the INPUT statement to enter data from the console device during
program execution. You may assign data to one or more variables with a
single input statement. You must separate the variables with commas.
You are prompted to enter data for each variable after the INPUT. If you
do not enter enough data, the module prints TRY AGAIN on the console
device.

>10 INPUT A,C

You can write the INPUT statement so that a descriptive prompt tells you
what to enter. The message printed is placed in quotes after the INPUT
statement. If a comma appears before the first variable on the input list,
the question mark prompt character is not displayed.

>10 INPUT “ENTER A NUMBER – ”,A

You can also assign strings with an INPUT statement. Strings are always
terminated with a carriage return (cr). If more than one string input is
requested with a single INPUT statement, the module prompts you with a
question mark. You can assign strings and variables with a single INPUT
statement.

>20 INPUT “NAME(CR),AGE – ”,$(1),A

Use the INPUT# statement to input data from port PRT2. Use the
INPUT@ statement to input data from port PRT1. Both these statements
function like the INPUT statement.

Syntax
INPUT

Example
>1 REM EXAMPLE PROGRAM
>10 INPUT A,C
>20 PRINT A,C
>RUN

?1

TRY AGAIN

?1,2
l 2

INPUT

Chapter
Statements

11

11 -18

Use the LD@ statement to retrieve floating point numbers stored with a
ST@ statement (page 11 -35). The expression following the LD@
statement specifies the address where you want to store the number after
executing the LD@. The LD@ statement places the number on the
argument stack at the address location you specify with expr.

You can use this statement with CALL 77 (page 13 -6) to retrieve variables
from a protected area of memory. This protected area is not zeroed on
power up or when you issue the RUN command (page 10 -19).

Important: LD@ and ST@ are not used with any port designation.

Syntax
LD@ expr

Example
>PRINT MTOP
 24515
>PRINT MTOP 10*6
 24455
>PUSH 24455 : CALL 77
>1 REM EXAMPLE PROGRAM
>5 DIM A(10),B(10)
>10 REM *** ARRAY SAVE ***
>20 FOR I = 0 TO 3
>30 A(I) = I+20
>40 PUSH A(I) : REM PUT NUMBER ON STACK
>50 ST@ 5FFFH-I*6
>60 NEXT I
>70 REM *** GET ARRAY ***
>80 FOR I = 0 TO 3
>90 LD@ 5FFFH-I*6
>100 POP B(I) : REM GET NUMBER FROM STACK
>110 PRINT B(I)
>120 NEXT I0
READY
>RUN
 20
 21
 22
 23
READY
>PUSH 5FFFH : CALL 77

>PTINT MTOP
 24575

LD@

Chapter
Statements

11

11 -19

Use the LET statement to assign a variable to the value of an expression.

The = sign used in the LET statement is not an equality operator. It is a
replacement operator. The statement should be read var is replaced expr.
The word LET is always optional (ex. LET A = 2 is the same as A = 2).
When LET is omitted the LET statement is called an IMPLIED LET.
We use the word LET to refer to both the LET statement and the IMPLIED
LET statement.

Also use the LET statement to assign string variables:

LET $(1)=“THIS IS A STRING”

or

LET $(2)=$(1)

Before you can assign strings you must execute the STRING expr, expr
statement (page 11 -37) or else a memory allocation error occurs that
causes the module to enter the Command mode.

Syntax
LET var = expr

Example
>1 REM EXAMPLE PROGRAM
>10 LET A = 10*SIN(C)/100

>20 LET B = B +1

LET

Chapter
Statements

11

11 -20

Use the MODE command to set the port parameters of ports PRT1, PRT2,
and DH-485.

Important: If a argument (other than port name and communication rate)
is blank, the argument defaults to the previously specified value for the
argument.

PRT1 and PRT2 port parameters (CALL 94, page 13 -32 and CALL 31,
page 12 -21 display these settings):

Port parameters Selections Default settings

communication rate 300, 600, 1200, 2400, 4800, 9600, 19200 1200

parity (arg1) none (N), even (E), odd (O) N

number of data bits (arg2) 7 or 8 8

number of stop bits (arg3) 1 or 2 1

handshaking (arg4) no handshaking (N)
software handshaking (S)
hardware handshaking (H)
hardware and software handshaking (B)

S

storage type (arg5) store information in user ROM and RAM (E)①

store information in battery backed RAM (R)
R

① The E storage setting type option cannot be used if MODE is used as a statement.

DH-485 port parameters (CALL 83, page 13 -11 displays these settings):

Port parameters Selections Default settings

communication rate 300, 600, 1200, 2400, 4800, 9600, 19200 19200

host node address (arg1) 0 to 31 0

module node address (arg2) 1 to 31 1

maximum node address (arg3) 1 to 31 31

not used (arg4) leave blank –

storage type (arg5) store information in user ROM and RAM (E)
store information in battery backed RAM (R)

R

Syntax

MODE (port, communication rate, arg1, arg2, arg3, arg4, arg5)

Example

>1 REM EXAMPLE PROGRAM

>10 MODE(DH485,19200,0,1,2,,R)

.

.

.

>25 MODE(PRT1,1200,N,8,,,)

MODE

Chapter
Statements

11

11 -21

Use the NEXT statement to return the FOR-TO-(STEP)-NEXT loop
(page 11 -11) to the beginning of the loop and add the value of the index
increment to the index. The current index value is then compared to the
index limit to determine if another loop should be performed.

Syntax
NEXT

Example
>1 REM EXAMPLE PROGRAM
>5 E=0 : C=10 : D=2
>10 FOR A=E TO C STEP D
>20 PRINT A
>30 NEXT A
>40 END
>RUN

0
2
4
6
8
10

READY
>

>NEW

>1 REM EXAMPLE PROGRAM
>10 FOR I = 0 TO 8 STEP 2
>20 PRINT I
>30 NEXT I
>40 END

>RUN

 0
 2
 4
 6
 8

NEXT

Chapter
Statements

11

11 -22

Use the ONDF1 statement to enable or disable the DF1 packet interrupt
capability. (ONDF1 is equivalent to CALL 16, page 12 -10). You process
the packet in an interrupt routine. Input the line number you want the
program to jump to when a PRT2 receives a valid DF1 packet after the
ONDF1 statement. Once you enable the DF1 packet interrupt, the BASIC
module processor checks the port PRT2 receive buffer for a DF1 packet at
the end of each line of BASIC. Execute a RETI (page 11 -33) within the
interrupt routine to return to the point in the program before the interrupt
occurred. To disable the DF1 packet interrupt input line number 0 after the
DF1 statement. This statement has no effect if the DF1 protocol is not
enabled (see CALL 108, page 13 -38) and JW4 (page 1 -6) is not in the
correct position.

If the DF1 packet arrives due to a CALL 122 (page 13 -58) or 123
(page 13 -66), when ONDF1 is enabled, you receive the DF1 packet
interrupt, but the DF1 packet has already been removed from the receive
buffer.

When you enter Run mode ONDF1 is disabled until you enable it.
ONDF1 is disabled when the BASIC module is in Command mode.

Syntax
ONDF1 ln num

Example
>1 REM EXAMPLE PROGRAM
>10 REM ENABLE DF1 PACKET INTERRUPT
>20 ONDF1 800:REM LINE NUMBER OF START OF INTERRUPT ROUTINE
>800 (BEGINNING OF INTERRUPT ROUTINE)
.
. (PROCESS THE PACKET)
.
>850 RETI

ONDF1

Chapter
Statements

11

11 -23

Use the ONERR statement to handle arithmetic errors, if they occur, during
program execution. The ONERR statement only traps arithmetic overflow
(value too large), arithmetic underflow (value too small), divide by zero,
and bad argument errors. All other errors are not trapped and cause the
BASIC module to enter the Command mode. If an arithmetic error occurs
after you execute the ONERR statement, the module interpreter passes
control to the line number (ln num) following the ONERR statement.
You handle the error condition in a manner suitable to your application.
The ONERR command does not trap bad data entered during an input
instruction. This yields a TRY AGAIN message or EXTRA IGNORED message.
For expanded ONERR functionality, refer to CALL 38 on page 12 -36.
Note: This statement did not work in the Series A module.

After you execute the ONERR statement, you can determine what type of
error occurred by examining external memory location 257 (101H).
The error codes are:
 ERROR CODE = 10–DIVIDE BY ZERO

 ERROR CODE = 13–DIVIDE SYNTAX ERROR

 ERROR CODE = 20–ARITH. OVERFLOW

 ERROR CODE = 30–ARITH.UNDERFLOW

 ERROR CODE = 40–BAD ARGUMENT

You can examine this value by using an XBY(257) special function
operator (page 9 -19). In addition, the line number can be determined by
this BASIC line 256*XBY(69FDH)+XBY(69FEH).

Syntax
ONERR ln num

Example
>1 REM EXAMPLE PROGRAM
>10 ONERR 500
>20 FOR I = 5 TO 0 STEP –1
>30 PRINT 1/I
>40 NEXT I
>50 END
>500 PRINT “ERROR CODE WAS ”,XBY(257)
>510 PRINT ”AT LINE ” (256*XBY(69FDH)+XBY(69FEH))
>510 END

READY
>RUN
 .2
 .25
 .33333333
 .5
 1
ERROR CODE WAS 10
AT LINE 30

ONERR

A GOTO statement (page 11 -14) can replace
the END statement (page 11 -10) in this
example to provide a method of user
programmed error recovery.

Chapter
Statements

11

11 -24

Use the ON-GOSUB statement to transfer control to the line(s) you
specified with the GOSUB statement (page 11 -13) when the value of the
expression following the ON statement is encountered in the BASIC
program.

All comments that apply to GOSUB apply to the ON statement. If the expr
after the ON is less than zero an ERROR: BAD ARGUMENT message is
generated. If the expr after the ON is greater than the line number list
following the GOSUB statement, an ERROR: BAD SYNTAX message is
generated. The ON-GOSUB statement provides conditional branching
options within the BASIC module program.

Important: Excessive nesting exceeds the limits of the control stack,
generating an error, and causing the module to enter Command mode.
For more information see control stack, page 8 -1.

Syntax
ON expr GOSUB ln num, ln num,...ln num

Example
>1 REM EXAMPLE PROGRAM
>10 ON Q GOSUB 100,200,300

If Q is equal to 0, control is transferred to line number 100. If Q is equal to
1, control is transferred to line number 200. If Q is equal to 2, control is
transferred to line number 300, and so on.

ON-GOSUB

Chapter
Statements

11

11 -25

Use the ONTIME expr, ln num statement to compensate for the
incompatibility between the timer/counters on the microprocessor and the
BASIC module. Your BASIC module can process a line in milliseconds
while the timer/counters on the microprocessor operate in microseconds.
The ONTIME statement generates an interrupt every time the special
function operator, TIME (page 9 -19), is equal to or greater than the
expression following the ONTIME statement.

Only the integer portion of TIME is compared to the integer portion of the
expression that gives you seconds. This comparison is performed at the
end (CR or :) of each line of BASIC. The interrupt forces a GOSUB
(page 11 -13) to the line number after the expression in the ONTIME.

The ONTIME statement does not interrupt an input command or a call
routine. Since the ONTIME statement uses the special function operator,
TIME, you must execute the CLOCK1 statement (page 11 -5) for
ONTIME to operate. If CLOCK1 is not executed the special function
operator, TIME, does not increment.

To execute the ONTIME interrupt at a fraction of a second use the special
function operator DBY(71) = X (page 9 -18) where X = 0 to 200.
Each count represents a 5 millisecond time interval.

Syntax
ONTIME expr, ln num

Example
>10 TIME = 0
>15 DBY(71) = 0
>20 CLOCK1
>30 ONTIME 2,100
>40 DO
>50 WHILE TIME < 7
>60 CLOCK0
>70 END
>100 PRINT “TIMER INTERRUPT AT – ”,TIME, “ SECONDS”
>110 ONTIME TIME+2,100
>120 RETI

READY
>RUN

TIMER INTERRUPT AT – 2.01 SECONDS
TIMER INTERRUPT AT – 4.005 SECONDS
TIMER INTERRUPT AT – 6.015 SECONDS

The time printed out is .01 seconds later than the time supposed to be
printed. The terminal used in the example operates at 19200 bit/s causing
a .01 second delay in printing

ONTIME

Chapter
Statements

11

11 -26

Use the ON-GOTO statement to transfer control to the line(s) you
specified with the GOTO statement (page 11 -14) when the value of the
expression following the ON statement is encountered in the BASIC
program.

All comments that apply to GOTO apply to the ON statement. If the expr
after the ON is less than zero, an ERROR: BAD ARGUMENT message is
generated and the BASIC module enters Command mode. If the expr after
the ON is greater than the line number list following the GOTO statement,
an ERROR: BAD SYNTAX message is generated. The ON-GOTO statement
provides conditional branching options within the BASIC module
program.

Syntax
ON expr GOTO ln num

Example
>1 REM EXAMPLE PROGRAM
>10 ON Q GOTO 100,200,300

Control is transferred to line 100 if Q is equal to 0 and then to line 200 if Q
is equal to 1. If Q is equal to 2, control is transferred to line number 300,
and so on.

ON-GOTO

Chapter
Statements

11

11 -27

Use the PH0. and PH1. statements to direct the BASIC module to print a
number in hexadecimal format to the console device. These statements
function in the same way as the PRINT statement (page 11 -29) except that
the values printed are in a hexadecimal format. The PH0. statement
suppresses two leading zeros if the number is less than 255 (0FFH).
The PH1. statement prints out four hexadecimal digits.

The character H always prints after the number when you use PH0. or
PH1. to direct an output. The values are truncated integers. If the number
is not within the range of valid integers (ex. between 0 and 65535
[0FFFFH] inclusive), the BASIC module defaults to the normal mode of
print. If this happens an H does not print out after the value. Since you
enter integers in either decimal or hexadecimal form, you can use the
statements PRINT, PH0., and PH1. to perform decimal to hexadecimal and
hexadecimal to decimal conversion. All comments that apply to the
PRINT statement apply to the PH0. and PH1. statements.

Important: You must ensure that buffer space is available anytime that
you are printing data out of the serial port using hardware handshaking or
software handshaking (XON/XOFF). Failure to do so causes the BASIC
program to stop executing while awaiting buffer space. When space is
available in the buffer, the BASIC module resumes execution from the
point where it left off. The transmit buffer of each port is capable of
holding 256 characters. See also the descriptions of CALLs 36 (page
12 -35), 37 (page 12 -35), 95 (page 13 -32), and 96 (page 13 -33).

Use the PH0#. and PH1#. operators to print to port PRT2 and the PH0@.
and PH1@. operators to read port PRT1.

Syntax
PH0. number or expression PH1. number or expression
PH0.# number or expression PH1.# number or expression
PH.0@number or expression PH1.@number or expression

Example
>PH0.2*2
04H

>PH1.2*2
0004H

>PH0. 100
64H

>PH0. 1000
3E8H

>PH1. 1000
03E8H

>PH1. 3E8
3.0 E+8

PH0. and PH1.

Chapter
Statements

11

11 -28

Use the POP statement to remove values from the BASIC module
argument stack. The value at the top of the argument stack is assigned to
the variable following the POP statement and the argument stack is popped
(decrements by 6 bytes). You can place values in the stack using the
PUSH statement (page 11 -30).

Important: If a POP statement executes and no number is in the argument
stack, an A-stack error occurs and the BASIC module enters Command
mode.

You can pop more than one variable off the argument stack using a single
POP statement with multiple variables (var, var, var). You must follow
each expression with a comma. The PUSH and POP statements accept
dimensioned variables A(4) and S1(12) as well as scalar variables. This is
useful when using call routines (see Chapters 12 and 13) in which large
amounts of data must be pushed or popped.

You can use the PUSH and POP statements to minimize GLOBAL variable
problems. These are caused by the main program and main program
subroutines using the same variable names. If you cannot use the same
variables in a subroutine as in the main program, you can re-assign a
number of variables (example: A=Q) before a GOSUB statement (page
11 -13) is executed. If you reserve some variable names just for
subroutines (S1, S2) and pass variables on the stack, you can avoid
GLOBAL variable problems in the BASIC module.

Syntax
POP var, var,.......var

Example
>1 REM EXAMPLE PROGRAM
>40 FOR I=1 TO 64
>50 PUSH I
>60 CALL 10
>70 POP A(I)
>80 NEXT I

POP

Chapter

Chapter
Statements

11

11 -29

Use the PRINT statement to direct the BASIC module to output a value to
the console device. You may print the value of expressions, strings, literal
values, variables or text strings. You may combine the various forms in the
print list by separating them with commas. If the list is terminated with a
comma, the carriage return/line feed is suppressed. P. is a shorthand
notation for PRINT. Values are printed next to one another with two
intervening blanks. A PRINT statement with no arguments sends a
carriage return/line feed sequence to the console device.

Important: The BASIC interpreter terminates the printing of a string if it
encounters a null (0), or CR (13) character. If you want to print strings
containing these values, print the characters individually inside of a loop
construct. To suppress the CR LF in the PRINT instruction, use a trailing
comma. Example: print A,

Important: You must ensure that buffer space is available anytime that
you are printing data out of the serial port using hardware handshaking or
software handshaking (XON/XOFF). Failure to do so causes the BASIC
program to stop executing while awaiting buffer space. When space is
available in the buffer, the BASIC module resumes execution from the
point where it left off. The output buffer of each port is capable of holding
256 characters. See descriptions of CALLs 36 (page 12 -35), 37 (page
12 -35), 95 (page 13 -32), and 96 (page 13 -33) for more information.

The symbols @ and # can be used to direct the print output to ports PRT1
and PRT2 respectively.

Syntax
Statement variation Description

PRINT output a value to the console device

PRINT CR output a carriage return without a line feed

PRINT SPC() output a specified number of spaces

PRINT TAB() output a specified number of tab characters

PRINT USING(Fx) output all numeric values in scientific notation. The x represents the total
number of digits of the mantissa that are displayed. One digit is displayed
before the decimal point. The value of x is a minimum of three and a
maximum of eight. The value displayed is adjusted according to these limits.

PRINT USING(#.#) output all numeric values in decimal notation according to the format specified

PRINT USING(0) restore the default print mode if the mode was altered by the PRINT
USING(Fx) expression, or by the PRINT USING(#.#) expression.

Example
>PRINT 10*10,3*3
 100 9

PRINT

Chapter
Statements

11

11 -30

Use the PUSH statement to place the arithmetic expression or expressions
in the BASIC module argument stack. This statement evaluates the
arithmetic expression, or expressions, following the PUSH statement and
then places them in sequence on the argument stack. Each variable
PUSHed increments the A-stack by 6 bytes.

The PUSH and POP statements provide a simple means of passing
parameters to call routines (see Chapters 12 and 13). In addition, the
PUSH and POP statements are used to pass parameters to BASIC
subroutines and to swap variables. The last value PUSHed onto the
argument stack is the first value POPped off the argument stack.

You can push more than one expression onto the argument stack using a
single PUSH statement with multiple expressions (expr, expr, expr).
You must follow each expression with a comma. The last value pushed
onto the argument stack is the last expression encountered in the push
statement.

Important: The argument stack can hold up to 33 floating point numbers
before overflowing.

Syntax
PUSH expr, expr, ... expr

Example
>1 REM EXAMPLE PROGRAM
>10 A = 10
>20 C = 20
>30 PRINT “A = ”,A,“ AND C = ” C
>40 PUSH A,C
>50 POP A,C
>60 PRINT “A = ”,A,“ AND C = ”,C
>70 END

READY
>RUN
A = 10 AND C = 20
A = 20 AND C = 10
READY
>NEW
>10 PUSH 0
>20 CALL 14
>30 POP W
>40 PRINT W
>50 END
READY
>RUN
 0

PUSH

Chapter

Chapter
Statements

11

11 -31

Use the READ statement to retrieve the expressions that you specified in
the DATA statement (page 11 -6) and assign the value of the expression to
the variable in the READ statement. The READ statement is always
followed by one or more variables. If more than one variable follows a
READ statement, separate them by a comma.

Every time a READ statement is encountered the next consecutive
expression in the DATA statement is evaluated and assigned to the variable
in the READ statement. You can place DATA statements anywhere within
a program. They are not executed and do not cause an error.
DATA statements are chained together and appear as one large DATA
statement. If at anytime all the data is read and you execute another READ
statement, the program terminates and the message ERROR: NO DATA –

IN LINE XX prints to the console device.

See also the DATA (page 11 -6) and RESTORE (page 11 -32) statements.

Syntax
READ

Example
>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 3
>20 READ A,C
>30 PRINT A,C
>40 NEXT I
>50 RESTORE
>60 READ A,C
>70 PRINT A,C
>80 DATA 10,20,10/2,20/2,SIN(PI),COS(PI)

READY
>RUN

 10 20
 5 10
 0 –1
 10 20

READY
>

READ

Chapter
Statements

11

11 -32

Use the REM command to specify a comment line in a BASIC program.
Adding comment lines to a program makes the program easier to
understand. Program lines that start with a REM command cannot be
terminated with a colon (:). REM commands can be placed after a colon
(:) in a program line. This allows you to place a comment on each line.

Important: REM commands add time to program execution. Use them
selectively or place them at the end of the program where they do not
affect program execution speed. Using REM commands in frequently
called loops or subroutines slows the BASIC program execution.

After debugging the program save a fully commented copy on disk and
remove comments from the executable program. PBASE provides a BDL
Macro that automatically strips comments from a program.

Syntax

REM

Example

>10 REM THIS IS A COMMENT LINE

>20 X=5 : REM THIS IS ALSO A COMMENT LINE

Use the RESTORE statement to reset the internal read pointer to the
beginning of the data so that you may read it again.

See also the DATA (page 11 -6) and READ (page 11 -31) statements.

Syntax
RESTORE

Example
>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 3
>20 READ A,C
>30 PRINT A,C
>40 NEXT I
>50 RESTORE
>60 READ A,C
>70 PRINT A,C
>80 DATA 10,20,10/2,20/2,SIN(PI),COS(PI)

READY
>RUN
 10 20
 5 10
 0 –1
 10 20

REM

Tip

RESTORE

Chapter
Statements

11

11 -33

Use the RETI statement to exit from an interrupt (ONDF1 (page 11 -22),
ONTIME (page 11 -25), CALL 16 (page 12 -10,) or CALL 32 (page
12 -12) that is processed in a BASIC module program. The RETI
statement functions the same as the RETURN statement (page 11 -34)
except that it also clears a software interrupt flag so interrupts can again be
acknowledged. If you do not execute the RETI statement in the interrupt
procedure, all future interrupts are ignored.

Syntax
RETI

Example
>1 REM EXAMPLE PROGRAM
>10 TIME=0 : CLOCK1 : ONTIME 2, 100 : DO
>20 WHILE TIME<10 : END
>100 PRINT “TIMER INTERRUPT AT -”, TIME,“ SECONDS”
>110 ONTIME TIME+2, 100 : RETI
>RUN
TIMER INTERRUPT AT - 2.045 SECONDS
TIMER INTERRUPT AT - 4.045 SECONDS
TIMER INTERRUPT AT - 6.045 SECONDS
TIMER INTERRUPT AT - 8.045 SECONDS
TIMER INTERRUPT AT - 10.045 SECONDS
READY

RETI

Chapter
Statements

11

11 -34

Use the RETURN statement to return control to the statement following
the most recently executed GOSUB (page 11 -13). Use one return for each
GOSUB to avoid overflowing the control stack. This means that a
subroutine you call with the GOSUB statement can call another subroutine
with another GOSUB statement.

Syntax
RETURN

Example

Simple Subroutine
>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 5
>20 GOSUB 100
>30 NEXT I
>40 END
>100 PRINT I
>110 RETURN
READY
>RUN
 1
 2
 3
 4
 5

Nested Subroutine
>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 5
>20 GOSUB 100
>30 NEXT I
>40 END
>100 PRINT I,
>110 GOSUB 200
>120 RETURN
>200 PRINT I*I,
>210 GOSUB 300
>220 RETURN
>300 PRINT I*I*I
>310 RETURN
READY
>RUN
 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125

RETURN

Chapter
Statements

11

11 -35

Use the ST@ statement to store BASIC module floating point numbers to a
specified address. The expression following the ST@ statement specifies
the address where you want the number stored in RAM. The ST@
statement takes the value on the top of the argument stack and stores it in
RAM at the address location you specify by expr.

You can use this statement with CALL 77 (page 13 -6) to store variables to
a protected area of memory. This protected area is not zeroed on power up
or when you issue the RUN command (page 10 -19). Use the LD@
statement (page 11 -18) to retrieve the floating point number you stored
with the ST@ statement.

Important: ST@ and LD@ are not used with any port designation.

Syntax
ST@ expr

Example
>PRINT MTOP
 24575
>PRINT MTOP–10* 6
 24515
>PUSH 24515 : CALL 77
>PRINT MTOP
 24515
>1 REM EXAMPLE PROGRAM
>5 DIM A(10),B(10)
>10 REM *** ARRAY SAVE ***
>20 FOR I = 0 TO 5
>30 A(I) = I+20
>40 PUSH A(I) : REM PUT NUMBER ON STACK
>50 ST@ 5FFFH-I*6
>60 NEXT I
>70 REM *** GET ARRAY ***
>80 FOR I = 0 TO 4
>90 LD@ 5FFFH-I*6
>100 POP B(I) : REM GET NUMBER FROM STACK
>110 PRINT B(I)
>120 NEXT I

READY

>RUN
20
 21
 22
 23
 24
READY
>PUSH 5FFFH : CALL 77
>PRINT MTOP
 24575

ST@

Chapter
Statements

11

11 -36

Use the STOP statement to break program execution at specific points in a
program. After a program is stopped you can display or modify variables.
You can resume program execution with a CONT command (page 10 -3).
The STOP statement allows for easy program debugging.

Note that the line number printed out after execution of the STOP
statement is the line number following the STOP statement, not the line
number that contains the STOP statement.

Syntax
STOP

Example
>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 100
>20 PRINT I
>30 STOP
>40 NEXT I

READY
>RUN

 1
STOP – IN LINE 40
READY
>CONT

 2
STOP – IN LINE 40
READY

>CONT
3
STOP – IN LINE 40
READY
>CONT

 4
STOP – IN LINE 40
READY
>

STOP

Chapter
Statements

11

11 -37

Use the STRING statement to allocate memory for strings.
Initially, memory is not allocated for strings. If you attempt to define a
string with a statement such as LET $(1)=“HELLO” before memory is
allocated for strings, an ERROR: MEMORY ALLOCATION message is
generated. The first expression in the STRING statement is the total
number of bytes you want to allocate for string storage. The second
expression gives the maximum number of bytes in each string. The second
value should not be larger than 254. These two numbers determine the
total number of defined string variables.

You can only use one STRING statement in your program to allocate
memory for all the strings you want to use in your program.
When allocating memory for strings remember that the STRING statement
itself has one overhead byte. As well, remember that BASIC uses one
overhead byte per string declared within the STRING statement.
The additional character for each string is allocated for the carriage return
character that terminates the string. For example, the statement STRING
100,10 allocates enough memory for nine 10-byte string variables, ranging
from $(0) to $(8) and all of the 100 allocated bytes are used. Note that $(0)
is a valid string in the BASIC module.

Important: If an ASCII null character is used within the string it acts as a
marker denoting the end of a string.

Important: After memory is allocated for string storage, commands (ex.
NEW, page 10 -10) and statements (ex. CLEAR, page 11 -2) cannot
de-allocate this memory. Cycling power also cannot de-allocate this
memory unless battery backup is disabled. You can de-allocate memory
by executing a STRING 0,0 statement. STRING 0,0 allocates no memory
to string variables.

STRING

Chapter
Statements

11

11 -38

Important: Define strings in your program first, unless you are executing
a CALL 77 (page 13 -6). Then, execute the CALL 77 first and define your
strings immediately after. The BASIC module executes the equivalent of a
CLEAR every time you execute the STRING statement. This is necessary
because string variables and numeric variables occupy the same external
memory space. After the STRING statement executes, all variables and
arrays are wiped out. Therefore perform string memory allocation early in
a program (in the first statement if possible). If you re-allocate string
memory you destroy all defined variables.

Important: The STRING statement turns off ONERR, CALL 38 and
ONTIME. Make sure that the STRING statement is executed before the
statements that enable interrupts.

Syntax
STRING expr, expr

Example
>10 STRING 100,30
>20 $(0) = “–––––MONTHLY REPORT–––––”
>30 PRINT $(0)
READY
>RUN
–––––MONTHLY REPORT–––––

Call Routines
0–68

12

Tip

What’s Next?

12 Chapter

12 -1

Call Routines 0 – 68

Calls 0 – 68 are described here. Calls 69 – 127 are described in Chapter
13. Chapter 7 gives you an overview of how to use these calls within your
BASIC program. Use these calls within your BASIC program or from the
command line.

Important: CALL numbers above 127 are not valid and cause the BASIC
module error–ERROR CALL ARGUMENT OUT OF RANGE.

CALL Description Page CALL Description Page

0 reset module 12 -2 35 retrieve numeric input character from PRT2 port 12 -34
1 no operation 12 -2 36 get number of characters in PRT2 port buffers 12 -35
2 timed-block-transfer-read buffer 12 -2 37 clear PRT2 port buffers 12 -35
3 timed-block-transfer-write buffer 12 -3 38 expanded ONERR restart 12 -36
4 set block-transfer-write length 12 -4 39 3.3-Digit Signed, BCD to BASIC Floating Point 12 -38
5 set block-transfer-read length 12 -4 40 set wall clock time 12 -39
6 block-transfer-write buffer 12 -5 41 set wall clock date 12 -40
7 block-transfer-read buffer 12 -5 42 set wall clock day of week 12 -40
8 disable interrupts (no operation) 12 -6 43 date/time retrieve string 12 -41
9 enable interrupts (no operation) 12 -6 44 date retrieve numeric 12 -41
10 3-digit decimal BCD to BASIC floating point 12 -6 45 time retrieve string 12 -42
11 16-bit binary to BASIC floating point 12 -7 46 time retrieve numeric 12 -42
12 4-digit octal to BASIC floating point 12 -7 47 retrieve day of week string 12 -43
13 6-digit decimal BCD to BASIC floating point 12 -8 48 retrieve day of week numeric 12 -43
14 SLC 16-bit signed integer to BASIC floating point 12 -8 49 read remote DH-485 SLC data file 12 -44
15 SLC 16-bit unsigned integer to BASIC floating point 12 -9 50 write to remote DH-485 SLC data file 12 -50
16 enable/disable DF1 packet interrupt 12 -10 51 undefined 12 -58
17 4-digit BCD to BASIC floating point 12 -11 52 date retrieve string 12 -58
18 re-enable control C break function 12 -11 53 undefined 12 -58
19 disable the control C break function 12 -12 54 undefined 12 -58
20 BASIC floating point to 3-digit decimal BCD 12 -12 55 undefined 12 -58
21 BASIC floating point to 16-bit binary 12 -13 56 undefined 12 -58
22 BASIC floating point to 4-digit octal 12 -13 57 undefined 12 -58
23 BASIC floating point to 6-digit decimal BCD 12 -14 58 undefined 12 -58
24 BASIC floating point to SLC 16-bit signed integer 12 -15 59 undefined 12 -58
25 BASIC floating point to SLC 16-bit binary 12 -16 60 string repeat 12 -59
26 BASIC floating point to 3.3-digit BCD 12 -17 61 string append 12 -60
27 BASIC floating point to 4-digit BCD 12 -17 62 number to string conversion 12 -61
28 undefined 12 -18 63 string to number conversion 12 -62
29 read/write to PLC/SLC from module internal string 12 -18 64 find a string in a string 12 -63
30 PRT2 port support parameter set 12 -20 65 replace a string in a string 12 -64
31 display PRT2 port parameters 12 -21 66 insert a string in a string 12 -65
32 enable/disable processor interrupt 12 -22 67 delete a string from a string 12 -66
33 transfer data from PRT1/PRT2 to BTR buffer 12 -23 68 determine length of a string 12 -67
34 transfer data from BTW buffer to PRT1/PRT2 12 -29 what’s next? 12 -67

What’s in This Chapter?
Chapter

Chapter
Call Routines 0–68

12

12 -2

This routine initiates a full reset. This is similar to a re-boot or pressing
the reset button. The BASIC module reacts to this reset the same as it does
when you turn on power to your I/O chassis backplane (page1 -13).

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 0

Example
> 10 CALL 0

This routine does nothing. You return back to the main program.

Use this routine to send data to the PLC processor. CALL 2 transfers the
block-transfer-read (BTR) buffer to the auxiliary processor on the BASIC
module for use in the next BTR request from the PLC processor.
If a data transfer does not occur within 2 seconds the routine returns to
your BASIC program without transferring data. BASIC execution halts
until the BTR occurs or the call times out.

Whenever this call is active bit 2 (the sync BTR bit) of the PLC input
image table is set. You can use this bit to trigger a BTR rung. If you are
using CALLs 33, 34, 49, 50, 118, 122, or 123 you must use these bits to
perform synchronous block transfers. Synchronous block transfer is only
supported in PLC-5 processors; use the sync BTR bit with a PLC-5.

Input and Output Arguments

This routine has no input arguments and one output argument. The output
argument is the status of the transfer. If CALL 2 times out before a
successful block transfer is complete, the status code returned is 89 (59H).
A time-out occurs if a previous CALL 2 initiated a block transfer read, and
the BTR was not serviced by the PLC processor. CALL 2 does not return
an error code if a mismatch occurs in block transfer length between the
BASIC module and the block transfer read instruction.

 0 = a successful transfer
 89 = a transfer did not occur and the call timed out

Syntax
CALL 2

POP status of transfer

Example
>10 CALL 2

>20 POP X

>30 IF X <> 0 PRINT “TRANSFER UNSUCCESSFUL”

CALL 0: Reset Module

CALL 1: No Operation

CALL 2: Timed Block-
Transfer-Read Buffer

Chapter
Call Routines 0–68

12

12 -3

Use this routine to receive data from the PLC processor. CALL 3 transfers
the block-transfer-write (BTW) buffer to the auxiliary processor on the
BASIC module for use in the next BTW request from the PLC processor.
If a data transfer does not occur within 2 seconds the routine returns to
your BASIC program with no new data. BASIC execution halts until the
BTW occurs or the call times out.

Whenever this call is active bit 1 (the sync BTW bit) of the PLC input
image table is set. You can use this bit to trigger a BTR rung. If you are
using CALLs 33, 34, 49, 50, 118, 122, or 123 you must use these bits to
perform synchronous block transfers. Synchronous block transfer is only
supported in PLC-5 processors. Only use the sync BTW bit with a PLC-5
processors.

Input and Output Arguments

This routine has no input arguments and one output argument. The output
argument is the status of the transfer.

 0 = a successful transfer

 92 (5CH) = mismatch in block transfer length between the BASIC
module and the block-transfer-write instruction.

 94 (5EH) = call timed out before a successful block transfer completed

Syntax
CALL 3

POP status of transfer

Example
>10 CALL 3

>20 POP X

>30 IF X <> 0 PRINT “TRANSFER UNSUCCESSFUL”

CALL 3: Timed Block-
Transfer-Write Buffer

Chapter
Call Routines 0–68

12

12 -4

Use this routine to set the number of words (1-64) to transfer from the PLC
processor to the BASIC module. The ladder logic program block-transfer
length must match the set value.

Important: Only use CALL 4 in your program once to set the
block-transfer-write block length.

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the number of words to BTW. If you do not use CALL 4 in
your program, the default block-transfer length is 5 words. This must
match the length of the PLC BTW instruction in the PLC ladder logic.

Syntax
PUSH number of words to BTW
CALL 4

Example
>10 PUSH 10

>20 CALL 4

Use this routine to set the number of words (1-64) to transfer from the
BASIC module to the PLC processor. The ladder logic program
block-transfer length must match the set value.

Important: Only use CALL 5 in your program once to set the
block-transfer-read block length.

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the number of words to BTR. If you do not use CALL 5 in
your program, the default block-transfer length is 5 words. This must
match the length of the PLC BTR instruction in the PLC ladder logic.

Syntax

PUSH number of words to BTR
CALL 5

Example

>10 PUSH 10

>20 CALL 5

CALL 4: Set Block-
Transfer-Write Length

CALL 5: Set Block-
Transfer-Read Length

Chapter
Call Routines 0–68

12

12 -5

Use this routine to receive data from the PLC processor. CALL 6 transfers
the block-transfer-write (BTW) buffer to the auxiliary processor on the
BASIC module for use in the next BTW request from the PLC processor.
This routine halts BASIC execution until a block-transfer write occurs.

Whenever this call is active bit 1 (the sync BTW bit) of the PLC input
image table is set. You can use this bit to trigger a BTR rung. If you are
using CALLs 33, 34, 49, 50, 118, 122, or 123 you must use these bits to
perform synchronous block transfers. Synchronous block transfer is only
supported in PLC-5 processors. Only use the sync BTW bit with a PLC-5
processors.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 6

Example
> 10 CALL 6

Use this routine to send data to the PLC processor. CALL 7 transfers the
block-transfer-read (BTR) buffer to the auxiliary processor on the BASIC
module for use in the next BTR request from the PLC processor. This
routine halts BASIC execution until a block-transfer read occurs.

Whenever this call is active bit 2 (the sync BTR bit) of the PLC input
image table is set. You can use this bit to trigger a BTR rung. If you are
using CALLs 33, 34, 49, 50, 118, 122, or 123 you must use these bits to
perform synchronous block transfers. Synchronous block transfer is only
supported in PLC-5 processors. Only use the sync BTR bit with a PLC-5
processors.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 7

Example
> 10 CALL 7

CALL 6: Block-Transfer-
Write Buffer

CALL 7: Block-Transfer-
Read Buffer

Chapter
Call Routines 0–68

12

12 -6

This routine was used during EPROM programming in the 1771-DB,
Series A BASIC module. If you initiate this call with a 1771-DB, Series B
BASIC module, nothing happens. The call simply returns to the main
program.

This routine was used during EPROM programming in the 1771-DB,
Series A BASIC module. If you initiate this call with a 1771-DB, Series B
BASIC module, nothing happens. The call simply returns to the main
program.

Use this routine to to covert 3-digit BCD from PLC processor to BASIC
floating point. See also CALL 20.

See Chapter 8 for more information.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the number (1 to 64) of the word in the block-transfer-write buffer that you
want to convert from 3-digit BCD to BASIC format. The output argument
is the value converted into BASIC floating point format. The sign bit is bit
number 16.

Syntax
PUSH number of word (1 – 64) to be converted
CALL 10

POP converted value

Example
> 10 PUSH X

> 20 CALL 10

> 30 POP Y

CALL 8: Disable Interrupts
(No Operation)

CALL 9: Enable Interrupts
(No Operation)

CALL 10:
3-Digit Signed, Fixed
Decimal BCD to
BASIC Floating Point

Chapter

Chapter
Call Routines 0–68

12

12 -7

Use this routine to convert 16-bit binary from PLC processor to BASIC
floating point. See also CALL 21.

See Chapter 8 for more information.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the number (1 to 64) of the word in the write-data-transfer buffer you want
to convert from 16-bit binary to BASIC format. The output argument is
the value converted into BASIC floating point format. There are no sign
or error bits decoded.

Syntax
PUSH number of word (1 – 64) to be converted
CALL 11

POP converted value

Example
> 10 PUSH X

> 20 CALL 11

> 30 POP Y

Use this routine to convert 4-bit octal from the PLC processor to BASIC
floating point. See also CALL 22.

See Chapter 8 for more information.

Input and Output Arguments

The input argument is the number (1 to 64) of the word in the processor
block-transfer buffer you want to convert from 4-digit signed octal to
BASIC floating point format. This 12-bit format has a maximum value of
+7777 octal. The output argument is the value converted into BASIC
floating point format. The sign bit is bit number 16.

Syntax
PUSH number of word (1– 64) to be converted
CALL 12

POP converted value

Example
> 10 PUSH X

> 20 CALL 12

> 30 POP Y

CALL 11: 16-Bit Binary to
BASIC Floating Point

Chapter

CALL 12:
4-Digit Signed Octal to
BASIC Floating Point

Chapter

Chapter
Call Routines 0–68

12

12 -8

Use this routine to convert 6-digit BCD from the PLC processor to BASIC
floating point. See also CALL 23.

See Chapter 8 for more information.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the number (1-64) of the first word (6-digit BCD is sent to the BASIC
module in two processor words) of the write-block-transfer buffer you
want to convert from 6-digit, signed, fixed decimal BCD to BASIC
floating point. The maximum values allowed are +999999. The output
argument is the value converted into BASIC floating point format.
The sign bit is bit number 16.

Syntax
PUSH number of word (1 – 64) to be converted
CALL 13

POP converted value

Example
> 10 PUSH X

> 20 CALL 13

> 30 POP Y

Use this call to convert an SLC 16-bit signed integer number from an SLC
processor to a BASIC floating-point number. This call is used to convert
SLC signed integer numbers to BASIC floating point. Use it with DH-485
related calls. See also CALL 24.

See Chapter 8 for more information.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the address number (100 to 139) of the word in the BASIC module input
buffer DH-485 common interface file you want to convert. The output
argument is the value converted into BASIC floating point format.

Syntax
PUSH number of word to be converted
CALL 14

POP converted value

Example
>1 REM EXAMPLE PROGRAM

>20 PUSH 101:REM CONVERT 101ST BYTE OF BASIC INPUT BUFFER

>30 CALL 14 : REM DO 16-BIT SIGNED TO F.P. CONVERSION

>40 POP W : REM GET CONVERTED VALUE

>50 PRINT W

CALL 13:
6-Digit Signed, Fixed
Decimal BCD to
BASIC Floating Point

Chapter

CALL 14:
SLC 16-Bit Signed Integer to
BASIC Floating Point

Chapter

Chapter
Call Routines 0–68

12

12 -9

Use CALL 15 to convert an SLC 16-bit unsigned integer (or 16-bit binary)
number from an SLC processor to a BASIC module floating-point number.
This call is used to convert SLC unsigned integer numbers to BASIC
floating point. Use it with DH-485 related calls. See also CALL 25.

See Chapter 8 for more information.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the address number (100 to 139) of the word in the BASIC module input
buffer DH-485 common interface file you want to convert. The output
argument is the value converted into BASIC floating point format.

Syntax
PUSH number of word to be converted
CALL 15

POP converted value

Example

>50 PUSH 120:REM CONVERT 120TH BYTE OF BASIC INPUT BUFFER

>60 CALL 15 :REM DO 16-BIT INTEGER TO F.P. CONVERSION

>70 POP L(9) :REM GET CONVERTED VALUE–store in array L(9)

CALL 15:
SLC 16-Bit Unsigned Integer
to BASIC Floating Point

Chapter

Chapter
Call Routines 0–68

12

12 -10

Use this routine to enable or disable the DF1 packet interrupt capability.
This call has the same functionality as the ONDF1 statement (page 11 -22).
You process the DF1 packet within an interrupt routine. To return to the
point in the program before the interrupt occurred, execute a RETI (page
11 -33) within the routine. Once you enable this call the processor checks
the PRT2 port for a received DF1 message at the end of each line of
BASIC code.

DF1 packets are disabled when the BASIC module is in Command mode.
When you enter Run mode CALL 16 is disabled until you enable it.
You must re-execute CALL 16 every time your enter Run mode.

If the DF1 packet arrives in PRT2 due to a CALL 122 (page 13 -58) or
CALL 123 (page 13 -66) you receive the DF1 packet interrupt when you
enable CALL 16. However, the DF1 packet is not in BASIC module input
buffer. It has already been removed.

This command has no effect if you have not set JW4 (page 1 -6) properly
and enabled the DF1 protocol (see CALL 108, page 13 -38).

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the beginning BASIC line number of the interrupt routine.
The program jumps to this line number when the PRT2 port buffer receives
a valid DF1 packet. A line number of 0 disables the DF1 packet interrupt.

Syntax
PUSH beginning line number of interrupt routine
CALL 16

RETI

Example
>20 PUSH 800: REM LINE NUMBER OF START OF INTERRUPT ROUTINE

>30 CALL 16

>800 (BEGINNING OF INTERRUPT ROUTINE)

: (PROCESS THE PACKET)

>850 RETI

CALL 16: Enable/Disable
DF1 Packet Interrupt

Chapter
Call Routines 0–68

12

12 -11

Use this routine to convert 4-digit BCD from the PLC processor to BASIC
floating point. See also CALL 27.

See Chapter 8 for more information.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the number (1-64) of the word in the block-transfer-write buffer you want
to convert from 4-digit BCD to BASIC floating point format.
The maximum value allowed is 0-9999. The output argument is the value
converted into BASIC floating point format.

Syntax
PUSH number of word (1 – 64) to be converted
CALL 17

POP converted value

Example
> 10 PUSH X

> 20 CALL 17

> 30 POP Y

Use CALL 18 to re-enable the Ctrl + C break function for LIST (page

10 -9) and RUN (page 10 -19) operations. Execute CALL 18 in a BASIC
program or from Command mode.

Important: When Ctrl + C is disabled, you are unable to stop

program execution through a BASIC command. Cycling power re-enables

Ctrl + C checking until the program once again disables Ctrl + C .

To stop program execution, you must cycle power and press Ctrl + C

before you execute the line that disables Ctrl + C . You can change

JW4 (page 1 -6) to the default position to stop a program that has

Ctrl + C disabled.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 18

Example
> 90 CALL 18

CALL 17: 4-Digit BCD to
BASIC Floating Point

Chapter

CALL 18: Re-Enable Control
C Break Function

Chapter
Call Routines 0–68

12

12 -12

Use CALL 19 to disable the Ctrl + C break function for LIST (page

10 -9) and RUN (page 10 -19) operations. Execute CALL 19 in a BASIC

program or from Command mode. Cycling power returns the Ctrl + C
function to normal operation if you disable it from the Command mode.

Important: Ctrl + C is enabled by default.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 19

Example
> 90 CALL 19

Use this routine to convert BASIC floating point to 3-digit PLC BCD
number. See also CALL 10.

See Chapter 8 for more information.

Input and Output Arguments

This routine has two input arguments and no output arguments. The first
input argument is the variable with a value in the range of +999 that you
want to convert to signed 3-digit BCD format. The second input argument
is the number of the word (1–64) to receive the converted value in the
block-transfer-read buffer. The sign bit is bit number 16.

Syntax
PUSH data to be converted
PUSH word location (1–64) to receive value
CALL 20

Example
>20 PUSH W :REM DATA TO BE CONVERTED

>30 PUSH 6 :REM WORD LOCATION TO GET DATA

>40 CALL 20

CALL 19: Disable the
Control C Break Function

CALL 20:
BASIC Floating Point to
3-Digit, Signed, Fixed
Decimal BCD

Chapter

Chapter
Call Routines 0–68

12

12 -13

Use this routine to convert BASIC floating point to 16-bit binary PLC
number. This routine takes a value between 0 and 65535 and converts it to
its binary representative and stores it in the block-transfer-read buffer in
one word. See also CALL 11.

See Chapter 8 for more information.

Input and Output Arguments

This routine has two input and no output arguments. The first input value
is the data or variable you want to convert to 16-bit binary. The second
input value is the number of the word (1–64) to receive the converted value
in the block-transfer-read buffer.

Syntax
PUSH value to be converted
PUSH word location (1–64) that receives the value

CALL 21

Example
>50 PUSH T :REM THE VALUE TO BE CONVERTED TO 16 BINARY

>60 PUSH 3 :REM WORD 3 IN THE BTR BUFFER GETS THE VALUE T

>70 CALL 21 :REM DO THE CONVERSION

Use this routine to convert a value from BASIC format to a four-digit,
signed, octal PLC value. See also CALL 12.

See Chapter 8 for more information.

Input and Output Arguments

This routine has two input and no output arguments. The first input value
is the data (+77778) or variable you want to convert to 4-digit, signed
octal. The second input value is the number of the word (1–64) to receive
the converted value in the block-transfer-read buffer. The sign bit is bit
number 16.

Syntax
PUSH value to be converted

PUSH word location (1–64) that receives the value
CALL 22

Example
>50 PUSH H :REM THE VALUE TO BE CONVERTED TO 4-DIGIT

 SIGNED OCTAL

>60 PUSH 3 :REM WORD 3 IN THE BTR BUFFER GETS THE VALUE H

>70 CALL 22 :REM DO THE CONVERSION

CALL 21:
BASIC Floating Point to
16-Bit Binary

Chapter

CALL 22:
BASIC Floating Point to
4-Digit, Signed Octal

Chapter

Chapter
Call Routines 0–68

12

12 -14

This routine converts a value from BASIC floating point format to
6-digit, signed, PLC BCD number in a 2 word format and places the
converted value in the block-transfer-read buffer. See also CALL 13.

See Chapter 8 for more information.

Input and Output Arguments

This routine has two input arguments and no output arguments. The first
input value is the data or variable. The second input value is the number of
the word (1–64) to receive the converted value in the block-transfer-read
buffer. The sign bit is bit number 16.

Syntax

PUSH value to be converted
PUSH word location (1–64) that receives the value

CALL 23

Example

>10 W=567321

>20 PUSH W

>30 PUSH 3

>40 CALL 23

CALL 23:
BASIC Floating Point to
6-Digit, Signed, Fixed
Decimal BCD Chapter

Chapter
Call Routines 0–68

12

12 -15

Use CALL 24 to convert a BASIC floating-point number to an SLC 16-bit
signed integer SLC number and place result in the BASIC module output
buffer, DH-485 common interface file. This call is used with DH-485 calls
for BASIC module to SLC data conversion. See also CALL 14.

See Chapter 8 for more information.

The fractional part of the BASIC floating-point value is truncated. If the
BASIC floating-point value is less than -32768, the value placed in the
BASIC module output buffer is -32768. If the BASIC floating-point value
is greater than +32767, the value placed in the BASIC module output
buffer is +32767. You are responsible for checking the range of the
number before conversion.

Input and Output Arguments

This routine has two input and no output arguments. The first input value is
the data variable you want to convert to 16-bit integer. The second input
value is the address number (100 to 139) of the word that receives the
converted value in the BASIC module output buffer.

Syntax

PUSH value to be converted
PUSH word location (100–139) that receives the converted value
CALL 24

Example

>10 W = 17

>40 PUSH W : REM THE VALUE TO BE CONVERTED

>50 PUSH 120 : REM WORD 120 OF BASIC OUTPUT BUFFER GETS W.

>60 CALL 24 : REM DO THE F.P. TO 16–BIT SIGNED CONVERSION

CALL 24:
BASIC Floating Point to SLC
16-Bit Signed Integer

Chapter

Chapter
Call Routines 0–68

12

12 -16

Use CALL 25 to convert a BASIC module floating-point value between 0
and 65535 to its 16-bit binary (or unsigned integer) SLC number and store
the result in the BASIC module output buffer DH-485 common interface
file. This call is used with DH-485 calls for BASIC module to SLC data
conversion. See also CALL 15.

See Chapter 8 for more information.

The fractional part of the BASIC module floating-point value is truncated.
If the BASIC module floating-point value is less than 0, then the value
placed in the output buffer is 0. If the value is greater than +65535, then
the value placed in the output buffer is +65535. You are responsible for
checking the range of the number before conversion.

Input and Output Arguments

This routine has two input and no output arguments. The first input value
is the data you want to convert to 16-bit binary. The second input value is
the address number (100 to 139) of the word in the BASIC module output
buffer to receive the converted value.

Syntax

PUSH value to be converted
PUSH word number (100–139) of BASIC module output buffer
CALL 25

Example

>40 PUSH 0A5H : REM THE VALUE TO BE CONVERTED

>50 PUSH 110 : REM WORD 110 OF BASIC MODULE OUTPUT BUFFER

>60 CALL 25 : REM DO F.P. TO 16-BIT BINARY CONVERSION

CALL 25:
BASIC Floating-Point to SLC
16-Bit Binary

Chapter

Chapter
Call Routines 0–68

12

12 -17

Use this routine to convert a variable in BASIC floating point format to a
signed, 6-digit, fixed decimal point PLC number and store it in 2 words in
the block-transfer-read buffer. See also CALL 39.

See Chapter 8 for more information.

Input and Output Arguments

This routine has two input arguments and no output arguments. The first
input value is the data (+999.999) or variable you want to convert to
3.3-digit, signed BCD. The second input value is the number of the first
word (1–64) to receive the converted value in the BTR buffer. The sign bit
number is bit 16.

Syntax
PUSH value to be converted
PUSH word number (1–64) of BASIC module BTR buffer
CALL 26

Example
>50 PUSH S :REM VALUE TO BE CONVERTED

>60 PUSH 3 :REM WORD 3 IN THE BTR BUFFER GETS THE VALUES

>70 CALL 26 :REM DO THE CONVERSION

Use this routine to convert a value in BASIC floating point format to a
4-digit, unsigned BCD PLC value and place it in the block-transfer-read
buffer. See also CALL 17.

See Chapter 8 for more information.

Input and Output Arguments

This routine has two input and no output arguments. The first input value
is the data (0-9999) or variable. The second input value is the number of
the word (1–64) to receive the converted value in the block-transfer-read
buffer.

Syntax
PUSH value to be converted
PUSH word number (1–64) of BASIC module BTR buffer
CALL 27

Example
>20 PUSH B : REM THE VALUE TO BE CONVERTED TO 4-DIGIT BCD

>30 PUSH 7 :REM WORD 7 IN THE BTR BUFFER GETS THE VALUE B

>40 CALL 27 :REM DO THE CONVERSION

CALL 26:
BASIC Floating Point to
3.3-Digit Signed BCD

Chapter

CALL 27:
BASIC Floating Point to
4-Digit BCD

Chapter

Chapter
Call Routines 0–68

12

12 -18

Undefined. If you execute an undefined call, you receive the error
message, “ERROR–UNSUPPORTED CALL .”

Use CALL 29 in conjunction with CALL 122 (page 13 -58) or CALL 123
(page 13 -66) to communicate between remote PLC processors and the
BASIC module internal string without local PLC processor interaction.
You can also use CALL 29, in conjunction with CALL 49 (page 12 -44) or
CALL 50 (page 12 -50), to communicate between remote SLC processors
and the BASIC module internal string (see String Data Types, page 8 -2)
without local PLC processor interaction. You must execute CALL 49, 50,
122, or 123 within the BASIC program before CALL 29.

CALL 29 is active when the internal string is the only choice in CALLs 49,
50, 122, or 123. In this situation, it is not practical to use the PLC block
transfer words to begin the transfer and to pass the status. The PLC
processor does not need to be involved. If you choose a PLC BTR or
BTW information, the local PLC processor controls the transfer with the
I/O bits. In this instance, when you attempt CALL 29, you receive a status
of 255.

When you execute CALL 29, the transfer is attempted. If you have not
executed the selected call (49, 50, 122, or 123) before executing CALL 29
you receive a status of 1 in the output argument. When you execute CALL
29 successfully, the value in the first character of the string (transaction
number) increments to designate that the transfer occurred. The range of
this character is 0–255.

Unlike CALLs 49, 50, 122, and 123, CALL 29 does not require PLC bit
handshaking at the end of the command when using an SLC file as a
source or destination.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the call you want to activate (CALL 49, 50, 122, or 123). The output
argument is the status of the transaction:

 0 = successful completion

 1 = chosen call (49, 50, 122, or 123) is not active

 51 = PLC/SLC command already in progress

 57 = bad input argument

 255 = PLC BTW or BTR is chosen for CALL 49, 50, 122, or 123 and
CALL 29 is ignored

 all other codes are identical to CALL 90/92 (see page 13 -18 or 13 -26)

CALL 28

CALL 29: Read/Write to a
PLC/SLC Processor from
the BASIC Module Internal
String

Chapter
Call Routines 0–68

12

12 -19

Syntax

PUSH 49, 50, 122, or 123 for the CALL you want to activate
CALL 29

POP status of transaction

Example

CALL 122 must be enabled with internal string only prior to executing
CALL 29 in this example. Upon execution of CALL 29, an attempt is
made to transfer one element from integer file 10, starting at element 0 of
the PLC-5 processor at node 3, to the internal string $(1) of the BASIC
module.

>5 STRING 1000, 100

>10 REM EXECUTE DF1 PLC REMOTE READ FROM INTERNAL

>20 REM STRING WITH NO PLC INTERVENTION

>21 REM SET UP CALL 122

>25 P USH 5, 3, 1 0, A SC(N) , 0, 1 0, 1 0, 1, 1, 1: C ALL 1 22

>27 P OP S TATUS

>30 PUSH 122

>40 CALL 29

>50 POP S

>60 IF (S=1) THEN PRINT “CALL 122 NOT ACTIVE”

>70 IF (S=255) THEN PRINT “PLC FILE CHOSEN FOR CALL 122”

>80 IF (S=0) THEN PRINT “SUCCESSFUL TRANSFER”

>90 IF (S<>0) THEN PRINT “UNSUCCESSFUL TRANSFER”

>100 END

Chapter
Call Routines 0–68

12

12 -20

Use this routine to set up the parameters for the PRT2 port.
The parameters you set are the number of bits/word, parity enable or
disable/even or odd, number of stop bits, and handshaking (software,
hardware, or none). The default communication rate is 1200 bit/s (jumper
selected) and the default start bit is 1 (fixed).

You can also use the MODE statement (page 11 -20) to set PRT2 port
parameters.

Important: From the factory, software handshaking is enabled for PRT2.
If you change this or any other PRT2 port parameter through a CALL 30 or
MODE statement and a execute PROG1 or PROG2, then the configuration
you selected with the CALL 30 or MODE statement is the power on
default. On power up the receive and transmit buffers are cleared.

The 1771-DB Series A, Rev. E added a RTS control mode to CALL 30.
This RTS control mode enabled the RTS signal and the RS-422 output pin
on each character transmitted. The 1771-DB Series B automatically
activates the RTS line any time a character is transmitted and deactivates
RTS after the last character exits the port. This feature allows RS-422
multi-point or point-to-point to function properly when hardware
handshaking is disabled.

Input and Output Arguments

This routine has six input and no output arguments. The input arguments
are (in this order):

Parameter Selections①

number of bits/word 5, 6, 7, 8

parity enable 0=None, 2=Even, 1=Odd

number of stop bits 1=1 Stop Bit, 2=2 Stop Bits, 3=1.5 Stop Bits

software handshaking 0=None, 1=XON-XOFF

hardware handshaking 0=CTS, DCD and DSR ignored

1=CTS, DCD and DSR used for handshaking

dummy argument (optional)② ignored (Series A compatibility)
① Default conditions are controlled by settings when PROG1 or PROG2 is executed
② Dummy argument is for 1771-DB Series A compatibility. It is not required for 1771-DB Series
B operation. If it is used, the 1771-DB Series B simply ignores it.

CALL 30: PRT2 Port
Support Parameter Set

Chapter
Call Routines 0–68

12

12 -21

Syntax

PUSH number of bits/word
PUSH parity
PUSH number of stop bits
PUSH software handshaking
PUSH hardware handshaking
CALL 30

Example

>100 PUSH 8 :REM 8 BITS/WORD

>120 PUSH 0 :REM NO PARITY

>140 PUSH 1 :REM 1 STOP BIT

>160 PUSH 0 :REM NO SOFTWARE HANDSHAKING

>180 PUSH 0 :REM IGNORE CTS, DCD and DSR

>190 CALL 30 :REM SET UP PRT2 PORT

–or–

>100 PUSH 8, 0, 1, 0, 0:CALL 30

This routine displays the current PRT2 port configuration on the terminal.
Enter CALL 31 from the Command mode.

Input and Output Arguments

This routine has no input or output arguments.

Syntax

CALL 31 Return

Example

>CALL 31

1200 BAUD

Hardware Handshaking OFF

1 Stop Bit(s)

No Parity

8 Bits/Char

Xon/Xoff

Important: Software handshaking status is shown only if enabled.

CALL 31: Display PRT2 Port
Parameters

Chapter
Call Routines 0–68

12

12 -22

Important: This call requires the BASIC module jumper JW5 to be in 16
point mode (page 1 -7).

Use CALL 32 to allow the PLC processor to interrupt the BASIC module.
When enabled the BASIC module monitors PLC output bit 16 for a 0 to 1
transition at the end of every BASIC line and generates the interrupt if the
bit is set. The PLC ladder logic should then clear the PLC output bit 16.

Interrupts are disabled when the BASIC module is in Command mode.
When you enter Run mode CALL 32 is disabled until you enable it.
You must re-execute CALL 32 every time you enter Run mode.

Input and Output Arguments

This routine has one input and no output arguments. The input argument is
the beginning line number of the interrupt routine. The program jumps to
this line number when PLC output bit 16 is set. The BASIC module
detects this transition automatically and jumps to the interrupt routine.
If you execute a RETI (page 11 -33) within the interrupt routine, you return
to the point in the program before the interrupt occurred. Line number 0
disables the processor interrupt.

Syntax
PUSH beginning line number of interrupt routine
CALL 32

Example
>1 REM EXAMPLE PROGRAM

>10 REM ENABLE PROCESSOR INTERRUPTS

>20 PUSH 1000

>30 CALL 32

>1000 (BEGINNING OF THE PROCESSOR INTERRUPT ROUTINE)

:

>1050 RETI

Sample Ladder Logic

()
O:001

16

CALL 32: Enable/Disable
Processor Interrupt

Chapter
Call Routines 0–68

12

12 -23

Important: This call requires the BASIC module jumper JW5 to be in 16
point mode (page 1 -7).

Use CALL 33 to transfer data from the BASIC module ASCII ports
directly to the BTR buffer and/or an internal string within the BASIC
module.

This call is useful for reading bar code data and sending it to the PLC
processor or an internal string. Once you set up and enable this operation,
it is performed transparently in the background while the BASIC module
executes a BASIC program in the foreground.

During data transfer, data is automatically transferred in 8-bit blocks from
the receive buffer of the port you selected to the BTR buffer locations
and/or BASIC internal string you selected for storage. The transfer occurs
when the BASIC module detects the number of characters you specified in
the receive buffer of the port or receives the user-defined delimiter in the
port. You can store the data either low byte first, then high byte, or high
byte first, then low byte within the 16-bit word of the destination. Data is
transferred on word boundaries. If you transfer an odd number of bytes,
the unused byte contains a zero.

The byte swap selection (low byte first, then high byte, or high byte first,
then low byte) of the last CALL 33 or CALL 34 you executed determines
the data packing method for all the ports that CALL 33 enables.

The low byte of BTR word 1 contains the character count (byte count) of
the data you transferred. If a delimiter is found, the byte count is expanded
to include the first occurrence of the delimiter. BTR word 2 contains the
first two characters of data.

If you choose an internal string, the first character of the string contains the
byte count. The second character of the internal string is a transaction
number and increments to inform the BASIC module that new data is in
the string. The value of this character wraps around from 255 to 0.
The third character of the string contains the first data character.

Execute CALL 33 to set up the data transfer parameters. After you
execute the call, the BASIC module gets data from the port and transfers it
to the destination.

CALL 33: Transfer Data from
PRT1 or PRT2 to the
BTR Buffer

Tip

Chapter
Call Routines 0–68

12

12 -24

1. When data is available from the port, the BASIC module
automatically transfers the data into the BTR buffer. The module also
checks the same port for data at the end of each line of BASIC code.

BASIC Module

PLC Processor

External Device

PLC Backplane

PRT2

PRT1 RS–232, RS–422,
or RS–485 Network

AVAILABLE
DATA

DATA

BTR Buffer

BYTE
COUNTReserved

2. The BASIC module places the byte count of the valid data into the
lower byte of BTR word 1 of the BTR buffer. The upper byte of
BTR word 1 is reserved.

DATA

BTR Buffer

BYTE
COUNT

BASIC Module

PLC Backplane

PLC Processor

Reserved

3. The BASIC module sets a bit in the PLC input image table to inform
the PLC processor that valid data is available. Bit 10 indicates that
data is available from PRT1 and bit 12 indicates that data is available
from PRT2.

PLC Processor

Set Input Image Table
Bit 10 or 12

BASIC Module

PLC Backplane PRT2

PRT1

DATA

BTR Buffer

BYTE
COUNTReserved

Chapter
Call Routines 0–68

12

12 -25

4. The ladder logic program of the PLC processor retrieves the data
from the input image table and performs a block transfer

PLC Processor

Block Transfer

BASIC Module

PLC Backplane
PRT2

PRT1

5. The BASIC module resets the bit in the PLC input image table on the
same end of the scan cycle in which the block transfer is performed.

Reset Input Image Table
Bit 10 or 12

PLC Processor BASIC Module

PLC Backplane
PRT2

PRT1

Data transfers continue until you re-execute the call for the port with
different input parameters. If this occurs, the previous CALL 33 for the
port is automatically disabled and the new CALL 33 takes effect.
You cannot execute multiple CALL 33s for the same port in parallel.
However, you can activate PRT1 and PRT2 simultaneously by issuing
separate CALL 33s.

Input and Output Arguments

This routine has seven input arguments and one output argument.

Argument Description Page

input 1 source port of BASIC module 12 -26

input 2 maximum number of 8-bit characters you want to copy
from the BASIC serial port to the destination file

12 -26

input 3 decimal value of the ASCII character delimiter 12 -26

input 4 selection of the destination buffer 12 -26

input 5 always 1 12 -27

input 6 the string number 12 -27

input 7 byte swap selection 12 -27

output 1 call status 12 -27

Chapter
Call Routines 0–68

12

12 -26

Input Argument One
The first input argument is the source port number (PRT1 or PRT2) of the
BASIC module. A zero disables all previously active CALL 33
commands.

 0 = disable CALL 33 for all active ports enabled by earlier CALL 33s
 1 = PRT1 is source
 2 = PRT2 is source

Input Argument Two
The second input argument is the maximum number of 8-bit characters you
want to copy from the BASIC serial port to the destination file.
The destination of your data (input argument four) determines the
maximum number of characters. These selections have a maximum
number of characters of:

 PLC BTR = 126 (63 words)
 Internal string = string size – 3 (254 maximum characters)

- first character is the byte count value
- second character is the incremented transaction number
- last character is the terminating character

If the port has acquired less than the maximum when it receives a delimiter
character, it sends the packet including the delimiter to the BTR buffer.
The ladder logic can determine the amount of valid data transferred into
the BTR buffer from the byte count placed into the lower byte of BTR
word 1. If the data received exceeds the string length or BTR buffer size,
the remaining data is truncated.

Input Argument Three
The third input argument is the decimal value of the ASCII character
delimiter. You can choose any valid ASCII character. If you do not want a
delimiter, enter a null value (0 decimal). The data is transferred to the
destination buffer when the delimiter is received from the selected port
regardless of the number of characters received.

Input Argument Four
The fourth input argument is the selection of the BTR buffer with or
without the internal string or the internal string alone:

 0 = BTR buffer
 2 = BTR buffer and internal string
 4 = internal string only

When transferring data to the internal string of the BASIC module, check
your transaction number for string updates because there is no indication
that data has been placed in the internal string. Your BASIC program must
check the transaction number to verify that the data was updated.

Chapter
Call Routines 0–68

12

12 -27

Input Argument Five
The fifth input argument should always be 1.

Input Argument Six
The sixth input argument is the string number. If the fourth input argument
does not select internal string usage, the value of this input argument is
ignored, but you must still PUSH the argument.

Input Argument Seven
The seventh input argument is the byte swap selection:

 0 = data bytes transferred from the BASIC port are not swapped when
passed to the destination. The data packing order is low byte first, then
high byte per word. The low byte of the first word in the destination file
contains the byte count.

 1 = data bytes transferred from the BASIC port are swapped when
passed to the destination. The data packing order is high byte first, then
low byte per word. Swapping does not affect the first word. The low
byte of the first word still contains the byte count.

The last CALL 33 or CALL 34 executed determines the byte swap option
for all active CALL 33 commands previously executed.

Output Argument One
The output argument is the status of the call. It has these values:

 0 = successful setup
 1 = disabled
 2 = bad input parameter
 3 = PRT2 is chosen but it is already enabled for DF1 protocol.

 Transfer is not executed.
 4 = string too small
 5 = string is not dimensioned
 6 = JW5 not in 16-point position

If data is being received into the serial port faster than the PLC processor is
retrieving data, the input buffer of the port fills up. If you use handshaking
between the port and the external device, no data is lost.

Chapter
Call Routines 0–68

12

12 -28

Syntax
PUSH source port number
PUSH maximum number of characters to be transferred
PUSH decimal value of character delimiter
PUSH selection of BTR buffer and/or string
PUSH 1

PUSH string number
PUSH byte swap selection
CALL 33

POP CALL 33 status

Example
>1 REM EXAMPLE PROGRAM

>05 PUSH 64 : CALL 5 : REM SET BLOCK TRANSFER READ

 LENGTH

>10 REM ENABLE CALL 33 INTERRUPTS

>20 PUSH 1 : REM PRT1 ACTIVE FOR CALL 33

>30 PUSH 10 : REM RECEIVING 10 BYTES OF DATA MAXIMUM

>40 P USH 13 : R EM <CR> U SED AS T ERMINATION CHARACTER

 (13 D ECIMAL)

>50 PUSH 0 : REM SEND DATA BTR BUFFER

>60 PUSH 1 : REM OFFSET ALWAYS 1

>70 PUSH 0 : REM STRING NUMBER – NOT USED

>80 PUSH 1 : REM BYTE SWAPPING ENABLED

>90 CALL 33

>100 POP S : REM STATUS OF CALL 33 SETUP

>110 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 33 SETUP”

>120 END

Sample Ladder Logic

BTR

BLOCK TRANSFER READ

Rack

Group

Module

00

1

0

N7:0

N10:10

64

Control Block

Data file

Length

Rung 2:0
I:001

Rung 2:1

[END OF FILE]

(EN)

(DN)

(ER)

NContinuous

10 PRT1

N7:0

10 PRT1 (or 12 PRT2)

(or 12 PRT2)
15

Chapter
Call Routines 0–68

12

12 -29

Important: This call requires the BASIC module jumper JW5 to be in 16
point mode (page 1 -7).

Use CALL 34 to transfer data from the BTW buffer file directly to the
BASIC module serial port and/or to a string within the BASIC module.

This call is useful for writing to a remote display device (operator
interface) directly from the PLC processor or an internal string. Once you
set up and enable this operation it is performed transparently in the
background while the BASIC module executes a BASIC program in the
foreground.

You can transfer the data low byte first, then high byte or high byte first,
then low byte to the BASIC module port. You can also store the data in a
string for the BASIC program to access. The byte swap selection (low
byte first, then high byte, or high byte first, then low byte) of the last
CALL 34 or CALL 33 you executed determines the data packing method
for all ports CALL 34 enables.

The low byte of the first word of the source file contains the character
count (byte count) of the data you want to transfer. If the byte count is
larger than the file, you can only transfer the maximum number of bytes
within the file. You do not use the high byte of the first word.

Execute CALL 34 to set up the data transfer parameters. After you
execute the call, the BASIC module gets data from the BTW buffer and
transfers it to port PRT1, port PRT2, or an internal string.

1. The ladder logic program of the PLC processor builds the data buffer.
The ladder logic then determines the byte count of the file you want
to transfer and places it into the lower byte of the BTW buffer word 1
to be transferred. This word plus the data comprise the data file to be
transferred.

BASIC Module

PRT2

PRT1

DATA BUFFER

BTW Buffer

BYTE
COUNTReserved

CALL 34: Transfer Data
from the BTW buffer to
PRT1 or PRT2

Tip

Chapter
Call Routines 0–68

12

12 -30

2. The ladder logic program of the PLC processor must latch the output
image table, bit 11 or bit 13 to inform the BASIC module that valid
data is available. Bit 11 indicates that data is available for PRT1 and
bit 13 indicates that data is available for PRT2.

Latch Output Image Table
Bit 11 or 13

PLC Processor BASIC Module

PLC Backplane
PRT2

PRT1

3. The BASIC module sets the input image table bit 11 or bit 13 to
inform the PLC processor that the BASIC module is ready for the
transfer.

Set Input Image Table
Bit 11 or 13

PLC Processor BASIC Module

PLC Backplane
PRT2

PRT1

4. The BASIC module automatically transfers the data to the destination
serial port (PRT1 or PRT2) from the BTW buffer and performs the
block transfer.

PLC Processor

BASIC Module

PLC Backplane PRT2

PRT1

DATA BUFFER

BTW Buffer

BYTE
COUNTReserved

5. The ladder logic program of the PLC processor unlatches output
image table bit 11 or bit 13.

Unlatch Output Image Table
Bit 11 or 13

PLC Processor BASIC Module

PLC Backplane

Chapter
Call Routines 0–68

12

12 -31

6. The BASIC module resets the input image table bit 11 or bit 13 on
the same end of scan cycle in which the output image table bit 11 or
bit 13 was reset.

Reset Input Image Table
Bit 11 or 13

PLC Processor BASIC Module

PLC Backplane

Transfers continue in this manner until you re-execute the call for the port
with different input parameters. If this occurs, the previous CALL 34 for
the port is automatically disabled and the new CALL 34 takes effect.
You cannot execute multiple CALL 34s for the same port in parallel.
However, you can activate port PRT1 and port PRT2 simultaneously by
issuing separate CALL 34s for these ports.

Input and Output Arguments

This CALL has five input arguments and one output argument.

Argument Description Page

input 1 destination of the data 12 -31

input 2 always 0 12 -32

input 3 always 1 12 -32

input 4 internal string number 12 -32

input 5 byte swap selection 12 -32

output 1 call status 12 -32

Input Argument One
The first input argument is the destination of the data. You can choose the
port number (1 or 2) and/or the internal string:

 0 = disable CALL 34 for all active ports and strings enabled by earlier
 CALL 34s

 1 = internal string only
 2 = port PRT1
 3 = internal string and port PRT1
 4 = port PRT2
 5 = internal string and port PRT2

If you choose an internal string (1, 3, or 5), the first character of the string
contains the byte count. The second character (transaction number)
increments to inform the BASIC module that new data is in the string.
The value of this character wraps around from 255 to 0. The data from the
source buffer begins with the third character of the string.

Chapter
Call Routines 0–68

12

12 -32

Input Argument Two
The second input argument is always 0.

Input Argument Three
The third input argument is always 1.

Input Argument Four
The fourth input argument is the internal string number. If the second
input argument does not select internal string usage, the value of this input
argument is ignored (but you must still PUSH it). If the data exceeds the
string length, the remaining data is truncated.

Input Argument Five
The fifth input argument is the byte swap selection:

 0 = data bytes transferred from the BTW buffer are not swapped when
passed to the BASIC module port or string. The data transfer order is
low byte first, then high byte per word. The low byte of the first word
in the source buffer contains the byte count.

 1 = data bytes transferred from the BTW buffer are swapped when
passed to the BASIC module port or string. The data transfer order is
high byte first, then low byte per word. Swapping does not affect the
first word. The low byte of the first word still contains the byte count.

The last CALL 34 you executed determines the byte swap option for all
active CALL 34 and CALL 33 commands you previously executed.

Output Argument One
The output argument is the status of the call. It has these values:

 0 = successful
 1 = disabled
 2 = bad input parameter
 3 = PRT2 is chosen but it is enabled for DF1 protocol–call not executed
 4 = string is too small
 5 = string is not dimensioned
 6 = JW5 not in 16-point position

Chapter
Call Routines 0–68

12

12 -33

Syntax

PUSH destination port number and/or internal string
PUSH 0

PUSH 1

PUSH string number
PUSH byte swap selection
CALL 34

POP CALL 34 status

Example

>01 PUSH 64 : CALL 4 : REM SET BLOCK TRANSFER WRITE

 LENGTH

>10 REM ENABLE CALL 34 INTERRUPTS

>20 PUSH 2 : REM SEND DATA TO PRT1

>30 PUSH 0 : REM ALWAYS 0

>40 PUSH 1 : REM ALWAYS 1

>50 PUSH 0 : REM STRING NUMBER/NOT USED HERE

>60 PUSH 1 : REM ENABLE BYTE SWAPPING

>70 CALL 34

>80 POP S : REM STATUS OF CALL SETUP

>90 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 34 SETUP”

Sample Ladder Logic

(L)
O:001

11

BTW

BLOCK TRANSFER WRITE

Rack

Group

Module

00

1

0

N7:0

N10:10

64

Control Block

Data file

Length

Rung 2:0

11 PRT1

I:001

Rung 2:2

[END OF FILE]

(EN)

(DN)

(ER)

NContinuous

N10:0

0 Rung enable bit
(N10:0 used as example)

(U)
N10:0This bit is O:001/13

if using PRT2

Rung 2:1

(U)

O:001

11 (or 13)

0

O:001

(or 13 PRT2)
11 PRT1
(or 13 PRT2)

Chapter
Call Routines 0–68

12

12 -34

Use this routine to retrieve the current character in the 255 character, PRT2
port receive buffer and convert it to its decimal representation. The PRT2
port receives data your device transmits and stores it in this buffer.

You can use the GET# statement (page 11 -12) in place of CALL 35.

Input and Output Arguments

This routine has no input arguments and one output argument. If there is
not a character in the PRT2 receive buffer, the output argument is 0 (null).
If there is a character, the output argument is the ASCII value of that
character.

Important: A 0 (null) is a valid character in some communication
protocols. Use CALL 36 to determine the actual number of characters in
the buffer.

Syntax
CALL 35

POP ASCII value of character

Example
>10 CALL 35

>20 POP X

>30 IF X = 0 THEN GOTO 10

>40 PRINT CHR(X)

This program shows how to read a number from the PRT2 port. A device
connected to the PRT2 port sends the number, followed by the character
“r” (e.g. 51r). The “r” indicates the end of the number. The BASIC
module unpacks the characters and combines them to form the number 51
and the character “r”.

>10 REM THIS PROGRAM DEMONSTRATES HOW TO READ A NUMBER FROM THE

>20 REM PRT2 PORT. A DEVICE CONNECTED TO THE PRT2 PORT

>30 REM SENDS THE NUMBER AS A SERIES OF ASCII CHARACTERS,

>40 REM FOLLOWED BY THE CHARACTER R. R INDICATES END OF THE NUMBER.

>50 T=0 : REM T WILL HOLD THE NUMBER RECEIVED FROM THE REMOTE DEVICE.

>60 CALL 35 : POP X : REM GET A CHARACTER FROM THE PRT2 PORT

>70 REM IF THE CHARACTER IS A VALID DIGIT, ADD IT TO T

>80 IF (X>=48).AND.(X<=57)T=(T*10)+(X-48)

>90 IF X=114 GOTO 110 : REM CHARACTER 114 IS A LOWER CASE R

>100 GOTO 60

>110 PRINT “THE NUMBER IS”, T

CALL 35: Retrieve Numeric
Input Character from PRT2
Port

Chapter
Call Routines 0–68

12

12 -35

Use this routine to retrieve the number of characters in the buffer you
choose.

Input and Output Arguments

This routine has one input and one output argument. The input argument
is the buffer you want to examine:

 0 = transmit buffer
 1 = receive buffer

The output argument is the number of characters in the specified buffer.

Syntax
PUSH buffer to examine
CALL 36

POP number of characters

Example
>10 PUSH 0: REM EXAMINES THE TRANSMIT BUFFER

>20 CALL 36

>30 POP X: REM GET THE NUMBER OF CHARACTERS

>40 PRINT “NUMBER OF CHARACTERS IN OUTPUT BUFFER IS”, X

>50 END

Use this routine to clear the PRT2 port receive and/or transmit buffer.

Input and Output Arguments

This routine has one input argument and no output argument. The input
argument is the buffer you want to clear:

 0 = transmit buffer
 1 = receive buffer
 2 = both buffers

Syntax
PUSH buffer to clear
CALL 37

Example
>10 PUSH 0: REM CLEARS THE TRANSMIT BUFFER

>20 CALL 37

CALL 36: Get the Number of
Characters in the PRT2 Port
Buffer

CALL 37: Clear the PRT2
Port Buffers

Chapter
Call Routines 0–68

12

12 -36

Use CALL 38 to expand the type of errors the ONERR statement (page
11 -23) traps and handles.

The ONERR statement only allows the BASIC module to jump to an error
handling routine when it encounters an arithmetic error (number too large,
number too small, bad argument or division by zero occurs). All other
errors cause the module to enter Command mode. When you initiate
CALL 38, you allow ONERR to service other errors (except hardware
errors–watchdog, time-out, RAM failure, etc.) the BASIC module
encounters instead of returning to Command mode.

If any error occurs that causes a restart, stacks are cleared. Variables and
ports, however, are not re-initialized. This call has no effect until you
execute the ONERR statement within the program. This call is reset when
the BASIC module returns to the Command mode. You must re-execute
CALL 38 every time you enter Run mode.

Use CALL 0 (page 12 -2) if you want to reset the module within the error
routine.

Input and Output Arguments

This routine has one input and no output arguments. The input argument
determines if the expanded ONERR function is enabled or disabled:

 0 = disable the expanded ONERR restart
 1 (or any other number) = enable the expanded restart

If you perform an XBY in the error routine, this a list of the status codes
you might receive.

Status code Description

01 BASIC module attempted to call an illegal call number

02 port has been assigned an invalid parameter

03 string has not been dimensioned

04 defined string length is too small for operation

05 memory has not been allocated for this string

06 attempted to transfer to a RAM or ROM program that did not exist

07 command or call can only be executed from Command mode

08 user PROM has invalid checksum

09 this statement or call requires a user PROM; no user PROM is installed

10 divide by zero

11 DH-485 call executed and DH485 port not enabled

12 argument stack problem

13 syntax error

14 control stack problem

15 array size problem

16 internal processor stack problem

CALL 38: Expanded ONERR
Restart

Tip

Chapter
Call Routines 0–68

12

12 -37

DescriptionStatus code

17 no DATA available for READ

18 DF1 cannot be enabled (JW4 in wrong position)

19 • illegal use of PRT2 while DF1 is enabled
• illegal use of PRT2 while background DF1 task is enabled
• attempted to transmit DF1 packet before DF1 is enabled
• attempted to transmit DF1 packet of incorrect length

20 arithmetic overflow (value too large for range)

21 bad line number

22 JW5 in 8-point position

30 arithmetic underflow (value too small for range)

40 bad argument

Syntax
PUSH 0 or 1
CALL 38

Example
>10 ONERR 160

>20 PUSH 1

>30 CALL 38

>40 PUSH 1000:REM PUSH NUMBER FOR CALL 20 CONVERSION +/–999

>50 PUSH 3:REM WORD 3 IN BTR BUFFER

>60 CALL 20:REM CONVERT TO 3-DIGIT SIGNED BCD

>70 X=100

>80 Y=0

>90 Z=X/Y

>100 END

>160 REM EXPANDED ONERR ROUTINE

>170 PRINT “ERROR CODE WAS”,XBY(257)

>180 PRINT “AT LINE ”,(256*XBY(69FDH)+XBY(69FEH))

>END

Chapter
Call Routines 0–68

12

12 -38

Use this routine to convert 3.3-digit BCD from the PLC processor to
BASIC floating point. See also CALL 26.

See Chapter 8 for more information.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the number (1-64) of the first word (3.3-digit BCD is sent to the BASIC
module in two processor words) of the write-block-transfer buffer you
want to convert from 3.3-digit, signed, fixed decimal BCD to BASIC
floating point. The maximum values allowed are +999999. The output
argument is the value converted into BASIC floating point format.
The sign bit is bit number 16.

Syntax
PUSH number of word (1 – 64) to be converted
CALL 39

POP converted value

Example
> 10 PUSH X

> 20 CALL 39

> 30 POP Y

CALL 39 : 3.3-Digit Signed,
BCD to BASIC Floating
Point

Chapter

Chapter
Call Routines 0–68

12

12 -39

Use this routine to set the wall clock time functions.

Important: The Series B, BASIC module does not update the wall clock
for Daylight Savings Time. You must do this manually. (The Series A,
BASIC module, revisions A, B, C and D update the fall time change
correctly but update the spring time change on the third weekend of April
instead of the first weekend.)

Input and Output Arguments

This routine has three input arguments and no output arguments. The input
arguments are the wall clock time functions:

 H = hours (0 to 23)
 M = minutes (0 to 59)
 S = seconds (0 to 59)

Syntax

PUSH hours 0–23
PUSH minutes 0–59
PUSH seconds 0–59
CALL 40

Example

Program the wall clock for 1:35 pm (13:35 on a 24 hour clock).

>10 H=13: M=35: S=00 :REM HOURS=13; MINUTES=35; SECONDS=00

>20 PUSH H,M,S :REM PUSH HOURS, MINUTES, SECOND

>30 CALL 40 :REM CALL THE ROUTINE TO SET THE WALL CLOCK TIME

CALL 40: Set the Wall
Clock Time (Hour, Minute,
Second)

Chapter
Call Routines 0–68

12

12 -40

Use this routine to set the wall clock date functions.

Input and Output Arguments

This routine has three input arguments and no output arguments. The input
arguments are the wall clock date functions:

 D = day
 M = month
 Y = year

Syntax
PUSH date 1–31
PUSH month 1–12
PUSH year 0–99
CALL 41

Example

Program the wall clock for the 16th day of June 1994.

>10 D=16: M=06: Y=94 :REM DAY OF MONTH=16, MONTH=6, YEAR=94

>20 PUSH D,M,Y :REM PUSH DAY OF MONTH, MONTH, YEAR

>30 CALL 41 :REM CALL THE ROUTINE TO SET THE WALL CLOCK DATE

Use CALL 42 to set the day of the week.

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the day of the week:

1 = Sunday
2 = Monday
3 = Tuesday
4 = Wednesday
5 = Thursday
6 = Friday
7 = Saturday

Syntax
PUSH day of week 1–7
CALL 42

Example
>10 PUSH 3:REM DAY OF WEEK.

>20 CALL 42:REM DAY IS TUESDAY.

CALL 41: Set Wall Clock
Date (Day, Month, Year)

CALL 42: Set Wall Clock
Day of Week

Chapter
Call Routines 0–68

12

12 -41

Use CALL 43 to retrieve the current date and time as a string.

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the number of the string to receive the date/time (dd/mm/yy
and hh:mm:ss). You must use the STRING statement (see page 11 -37) to
allocate a minimum of 18 characters for the string. This requires you to set
the maximum length for all strings to at least 18 characters.

Syntax
PUSH number of string to receive date/time
CALL 43

Example
>10 STRING 100,18

>20 PUSH 1: CALL 43: REM PUT DATE/TIME IN STRING 1

>30 PRINT $(1)

>40 END

Use CALL 44 to retrieve the current date on the argument stack as three
numbers.

Input and Output Arguments

This routine has no input arguments and three output arguments.
The output arguments are the day, month and year in that order.

Syntax
CALL 44

POP day
POP month
POP year

Example
>10 REM DATE RETRIEVE - NUMERIC EXAMPLE

>20 CALL 44 : REM INVOKE THE UTILITY ROUTINE

>30 POP D,M1,Y: REM GET THE DATA FROM THE 30 STACK

>40 PRINT “CURRENT DATE IS”, Y,M1,D

>50 END

>RUN

CURRENT DATE IS 84 12 25

CALL 43: Retrieve
Date/Time String

CALL 44: Retrieve Date
Numeric (Day, Month, Year)

Chapter
Call Routines 0–68

12

12 -42

Use CALL 45 to retrieve the current time in a string (hh:mm:ss).

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the number of the string to receive the time. You must use the
STRING statement (see page 11 -37) to allocate a minimum of 8 characters
for the string.

Syntax
PUSH number of string to receive the time
CALL 45

Example
>10 STRING 100,8

>20 PUSH 1: CALL 45: REM put time in string 1

>30 PRINT $(1)

>40 END

>READY

>RUN

15: 45: 27

Use CALL 46 to retrieve the time of day in numeric form.

Input and Output Arguments

This routine has no input arguments and three output arguments.
The output arguments are hours, minutes and seconds in that order.

Syntax
CALL 46

POP hour
POP minute
POP second

Example
>10 REM TIME IN VARIABLES EXAMPLE

>20 CALL 46 : REM GET WALL CLOCK TIME

>30 POP H,M,S

>40 PRINT “CURRENT TIME IS”, H,M,S

>50 END

>RUN

CURRENT TIME IS 13 44 54

READY

>

CALL 45: Retrieve Time
String

CALL 46: Retrieve Time
Numeric

Chapter
Call Routines 0–68

12

12 -43

Use CALL 47 to retrieve the current day of week as a three character
string.

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the number of the string to receive the day of week. You must
use the STRING statement (see page 11 -37) to allocate a minimum of 3
characters/string. Strings returned are SUN, MON, TUE, WED, THU,
FRI, SAT.

Syntax
PUSH number of string to receive the day of the week
CALL 47

Example
>10 STRING 100,3

>20 PUSH 0 : CALL 47

>30 PRINT “Today is ”,$(0)

>RUN

Today is THU

Use CALL 48 to retrieve the current day of week on the argument stack as
a number.

Input and Output Arguments

This routine has no input arguments and one output argument. The output
argument is the day of the week as a number:

��1 = Sunday ��5 = Thursday
��2 = Monday ��6 = Friday
��3 = Tuesday ��7 = Saturday
��4 = Wednesday

Syntax
CALL 48

POP day of the week (1–7)

Example
>10 REM DAY OF WEEK RETRIEVE - NUMERIC EX

>20 CALL 48: REM INVOKE UTILITY TO GET D.O.W.

>30 POP D

CALL 47: Retrieve Day of
Week String

CALL 48: Retrieve Day of
Week Numeric

Chapter
Call Routines 0–68

12

12 -44

Important: This call requires the BASIC module to be in 16 point mode
(page 1 -7).

Use CALL 49 to read up to 63 words of data from a remote DH-485 node
and place in the BTR buffer or a string within the BASIC module.

This call is useful for reading bar code data and sending it to the PLC
processor or an internal string. Once you set up and enable this operation,
it is performed transparently in the background while the BASIC module
executes a BASIC program in the foreground.

Refer to the DF1 Protocol and Command Set Reference Manual
(publication number 1770-6.5.16) for detailed information on DH-485.

If you choose an internal string, the first character increments to inform the
BASIC module that new data is in the string. The value of this character
wraps around from 255 to 0.

Execute CALL 49 once to set up the data transfer parameter.
PLC handshaking is used to initiate and notify completion of the transfer.
The BASIC module sends the DH-485 READ command you configure in
in this call to the remote DH-485 device you designate on the network.

1. The local PLC processor sets the output image table bit 14 to inform
the BASIC module to execute the DH-485 READ command you
configured in CALL 49.

PLC Processor
BASIC Module

PLC Backplane
Set Output Image Table
Bit 14

2. The BASIC module automatically issues the appropriate DH-485
READ command to the remote device on the DH-485 network.
The data and status are sent back to the BASIC module.

BASIC Module
PLC Processor

Remote Device

PLC Backplane

DH485
Data and Status

READ Command

Data

CALL 49: Read Remote
DH-485 SLC Data File

Tip

Chapter
Call Routines 0–68

12

12 -45

3. When data is available, the BASIC module transfers the data into
BTR buffer. The DH-485 status word is placed in lower byte of
word 1. The upper byte of BTR word 1 is reserved.

BASIC Module

DATA 2–64

BTR Buffer

Status 1Reserved

4. The BASIC module sets the input image table, bit 14 and performs a
block transfer read.

PLC Processor BASIC Module

PLC Backplane
Set Input Image Table
Bit 14

5. The local PLC receives the data and status from the block transfer
and then resets output image table bit 14 to inform the BASIC
module that it received data.

PLC Processor BASIC Module

PLC Backplane
Resets Output
Image Table
Bit 14

6. The BASIC module resets the input image table bit 14 on the same
end of scan cycle in which the block transfer was completed.

PLC Processor BASIC Module

PLC Backplane
Reset Input
Image Table
Bit 14

Chapter
Call Routines 0–68

12

12 -46

This call is active until you re-execute it with different input parameters.

Input and Output Arguments

This call has ten input arguments and one output argument.

Argument Description Page

input 1 type of DH-485 READ 12 -46

input 2 node address of the DH-485 remote device (0 through 31) 12 -46

input 3 file number on the DH-485 remote device (0 through 255) 12 -46

input 4 file type to be read from the remote device 12 -47

input 5 starting word offset within the file on the remote device (0
through 32766)

12 -47

input 6 number of words to be transferred 12 -47

input 7 the message time-out value 12 -47

input 8 the selection of the destination file and/or string 12 -48

input 9 always 1 12 -48

input 10 the string number 12 -48

output 1 call status 12 -48

To disable this call, you must PUSH a 0 into the first input parameter.
All other parameters are ignored, but you must still PUSH them.

Input Argument One
The first input argument is the type of DH-485 READ command issued:

 0 = disable the previously executed CALL 49
 1 = common interface file (CIF) read
 2 = SLC typed read

Input Argument Two
The second input argument is the node address of the DH-485 remote
device (0 through 31). If the number is not within this range, the status
equals 2 and the read message does not occur.

Input Argument Three
The third input argument is the file number on the DH-485 remote device
(0 through 255). If the number is not within this range, the status equals 2
and the read message does not occur. The parameter is ignored if you
choose the Common Interface File (CIF) in the first parameter. The CIF is
always file 9.

Chapter
Call Routines 0–68

12

12 -47

Input Argument Four
The fourth input argument is the file type to be read from the remote
device. This number is ignored if the CIF is chosen in the first parameter
(assumes integer file). If the file type is not one of these listed below,
the status equals 2 and the read message does not take place. Enter the file
type code as shown below when you PUSH the fourth input parameter.

File type File type code Words/Element

integer file ASC(N) 1 word/element

counter file ASC(C) 3 words/element

timer file ASC(T) 3 words/element

bit file ASC(B) 1 word/element

control file ASC(R) 3 words/element

Input Argument Five
The fifth input argument is the starting word offset within the file on the
remote device (0 through 32766). If the number is not within this range,
the status equals 2 and the transfer does not occur. (The SLC 500
processor only supports 0 through 255 words per file.)

Input Argument Six
The sixth input argument is the number of elements you want to transfer.
If the number is not within the range shown, the status equals 2 and the
transfer does not occur. SLC 5/01 and SLC 5/02 processors support
transfers up to 41 words maximum.

File type code Valid length range

ASC(N) 1 to 63

ASC(C) 1 to 21

ASC(T) 1 to 21

ASC(B) 1 to 63

ASC(R) 1 to 21

common interface file 1 to 63

Important: When selecting the BTR buffer as the destination in Input
Argument Eight, the valid length range in Input Argument Six assumes
that the proper block-transfer length has been set.

Input Argument Seven
The seventh input argument is the message time-out value. This value (1
through 255) corresponds to the number of hundreds of milliseconds that
are allowed to receive the read response (0.1 through 25.5 seconds). If the
read response is not received within this time, the message aborts with the
status equal to 55 in the BTR word 1. If the time-out value is not within
the range (1 through 255), the output status equals 2 and the transfer does
not take place.

Chapter
Call Routines 0–68

12

12 -48

Input Argument Eight
The eighth input argument is the selection of the BTR buffer and/or string:

 0 = BTR buffer
 2 = internal string
 4 = BTR buffer and internal string

If you choose internal string (2), you can execute CALL 29 (page 12 -18)
to initiate each data transfer without requiring PLC processor interaction.

Input Argument Nine
The ninth input argument is always 1.

Input Argument Ten
The tenth input argument is the string number. If the eighth input
argument does not select internal string usage, the value of this input
argument is ignored, but you must still PUSH it.

Output Argument One
The output argument is the status of the call. It has these values:

 0 = successful
 1 = disabled
 2 = bad input parameter
 3 = port DH-485 not enabled (DF1 enabled)
 4 = string is too small
 5 = string is not dimensioned
 6 = JW5 not in 16-point position

Whenever an attempt is made to read a remote packet, the status of the
read is placed into BTR word 1. These values have the same definition as
the output values in CALL 92 (page 13 -26). The status becomes valid
when the BASIC module sets the input image table bit 14.

Syntax

PUSH type of DH-485 READ command
PUSH remote node address
PUSH remote file number
PUSH remote file type
PUSH starting word offset of remote file
PUSH number of words to be transferred
PUSH message time-out value
PUSH selection of destination file (BTR buffer)
PUSH 1

PUSH string number
CALL 49

POP CALL 49 status

Chapter
Call Routines 0–68

12

12 -49

Example

>10 REM ENABLE REMOTE DH-485 READ COMMAND INTERRUPT

>15 PUSH 64: CALL 4: REM SET BLOCK TRANSFER WRITE LENGTH

>16 PUSH 64: CALL 5: REM SET BLOCK TRANSFER READ LENGTH

>20 PUSH 2 : REM SLC TYPED READ COMMAND

>30 PUSH 2 : REM NODE ADDRESS OF REMOTE SLC

>40 PUSH 7 : REM FILE NUMBER OF REMOTE SLC

>50 PUSH ASC(N) : REM FILE TYPE OF REMOTE SLC

>60 PUSH 100 :REM REMOTE ELEMENT OFFSET INTO REMOTE SLC FILE

>70 PUSH 20 : REM NUMBER OF ELEMENTS TO BE TRANSFERRED

>80 PUSH 5 : REM MESSAGE TIMEOUT (X100MS)

>90 PUSH 0 : REM DESTINATION FILE TO PUT DATA (BTR BUFFER)

>100 PUSH 1 : REM ALWAYS 1

>110 PUSH 0 :REM STRING NUMBER–NOT AVAILABLE FOR THIS EXAMPLE

>120 CALL 49

>130 POP S

>140 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 49 SETUP”

Sample Ladder Logic

(L)
O:001

14

BTR

BLOCK TRANSFER READ

Rack

Group

Module

00

1

0

N7:0

N10:10

64

Control Block

Data file

Length

Rung 2:0

14

I:001

Rung 2:2

[END OF FILE]

(EN)

(DN)

(ER)

NContinuous

N10:0

0 Rung enable bit
(N10:0 used as example)

(U)
N10:0

Rung 2:1

(U)

O:001

14

0

O:001

14

Chapter
Call Routines 0–68

12

12 -50

Important: This call requires the BASIC module jumper JW5 to be in 16
point mode (page 1 -7).

Use CALL 50 to write up to 63 words of data from the BTW buffer and/or
a string within the BASIC module to the remote DH-485 file at the node
address you designate.

This call is useful for writing to a display device directly from the PLC
processor or an internal string. Once you set up and enable this operation,
it is performed transparently in the background while the BASIC module
executes a BASIC program in the foreground.

Refer to the DF1 Protocol and Command Set Reference Manual
(publication number 1770-6.5.16) for detailed information on DH-485.

If you choose an internal string, the first character (transaction number)
increments on successful completion of the write to inform the BASIC
module that data was sent. The value of the transaction number wraps
around from 255 to 0. Execute CALL 50 once to set up data transfer
parameters.

1. Local PLC processor ladder logic builds a file with the DH-485 data.

PLC Processor

DATA 2–64

Reserved Reserved

DH-485 Data File

2. The PLC processor latches output image table, bit 15 to inform the
BASIC module that data can be transferred.

PLC Processor BASIC Module

PLC Backplane

Latch Output
Image Table
Bit 15

CALL 50: Write to Remote
DH-485 SLC Data

Tip

Chapter
Call Routines 0–68

12

12 -51

3. The BASIC module sets bit 15 in the input image table to inform the
PLC processor that a block transfer write will be performed.

PLC Processor BASIC Module

PLC Backplane

Set Input
Image Table
Bit 15

4. The BASIC module performs a block transfer to receive the data.

BASIC Module

PLC Processor

PLC Backplane

DATA 2–64

BTW Buffer

Reserved Reserved

5. The PLC processor unlatches bit 15 in the output image table.

PLC Processor BASIC Module

PLC Backplane

Unlatch Output
Image Table
Bit 15

6. The BASIC module resets bit 15 in the input image table.

PLC Processor BASIC Module

PLC Backplane

Reset Input
Image Table
Bit 15

Chapter
Call Routines 0–68

12

12 -52

7. The BASIC module assembles the DH-485 packet and sends it to the
remote device on the DH-485 network

BASIC Module

Remote Device

DH485 DH-485 Network DATA BUFFER

8. The BASIC module places the DH-485 transfer status into the BTR
buffer word 1.

PLC Processor BASIC Module

PLC Backplane

BTR Buffer

Status 1Reserved

9. The BASIC module sets the input image table, bit 16 to inform the
local PLC processor that valid data is transferred and the status of the
transfer is available. The PLC performs a block transfer to retrieve
the status.

PLC Processor BASIC Module

PLC Backplane
Set Input
Table Bit 16

10. The BASIC module detects a successful block transfer and resets the
input image table, bit 16.

PLC Processor BASIC Module

PLC Backplane

Reset Input
Image Table
Bit 16

Chapter
Call Routines 0–68

12

12 -53

Once this call is active, it remains active and sends data to the remote node
whenever the PLC processor handshaking is accomplished.

Input and Output Arguments

This call has ten input arguments and one output argument.

Argument Description Page

input 1 type of DH-485 WRITE 12 -53

input 2 node address of the DH-485 remote device (0 through 31) 12 -53

input 3 file number on the DH-485 remote device (0 through 255) 12 -53

input 4 file type to be written to the remote device 12 -54

input 5 starting word offset within the file on the remote device (0
through 32766)

12 -54

input 6 number of words to be transferred 12 -54

input 7 the message time-out value 12 -54

input 8 the selection of the source BTW buffer or internal string 12 -55

input 9 always 1 12 -55

input 10 the string number 12 -55

output 1 call status 12 -55

To disable this call, you must PUSH a zero into the first input parameter.
All other parameters are ignored but you must still PUSH them.

Input Argument One
The first input argument is the type of DH-485 WRITE command issued:

 0 = disable the previously executed CALL 50
 1 = common interface file write
 2 = SLC typed write

Input Argument Two
The second input argument is the node address of the DH-485 remote
device on the DH-485 network (0 through 31). If the number is not within
this range, the status equals 2 and the write message does not occur.

Input Argument Three
The third input argument is the file number on the DH-485 remote device
(0 through 255). If the number is not within this range, the status equals 2
and the write message does not occur.

Chapter
Call Routines 0–68

12

12 -54

Input Argument Four
The fourth input argument is the file type you want to write to the remote
device. This number is ignored if choose the CIF in the first parameter
(assumes integer file). If the file type is not one of those listed, the status
equals 2 and the write message does not take place. Enter the file type
code as shown:

File type File type code Words/Element

integer file ASC(N) 1 word/element

counter file ASC(C) 3 words/element

timer file ASC(T) 3 words/element

bit file ASC(B) 1 word/element

control file ASC(R) 3 words/element

Input Argument Five
The fifth input argument is the starting word offset within the file on the
SLC remote device (0 through 32766). If the number is not within this
range, the status equals 2 and the transfer does not occur.

Input Argument Six
The sixth input argument is the number of elements you want to transfer.
If the number is not within the range shown, the status equals 2 and the
transfer does not occur.

File type code Valid length range

ASC(N) 1 to 40

ASC(C) 1 to 13

ASC(T) 1 to 13

ASC(B) 1 to 40

ASC(R) 1 to 13

common interface file 1 to 40

Input Argument Seven
The seventh input argument is the message time-out value. This value
(1 through 255) corresponds to the number of hundreds of milliseconds
that are allowed to receive the write response (0.1 through 25.5 seconds).
If the write response is not received within this time, the message aborts
and the status equals 55 in BTR word 1. If the time-out value is not within
the range (1 through 255), the output argument status equals 2 and the
transfer does not take place.

Chapter
Call Routines 0–68

12

12 -55

Input Argument Eight
The eighth input argument is the selection of the source BTW buffer or the
internal string:

 0 = BTW buffer
 2 = internal string

If you choose internal string (2), you can execute CALL 29 (page 12 -18)
to initiate each data transfer without requiring PLC processor interaction.
The output table bit 15 also initiates a string transaction.

Input Argument Nine
The ninth input argument is always 1.

Input Argument Ten
The tenth input argument is the string number. If the eighth input
argument does not select internal string usage, the value of this input
argument is ignored, but you must still push it.

Output Argument One
The output argument is the validation of the call parameters. It has these
values:

 0 = successful
 1 = disabled
 2 = bad input parameter
 3 = port DH-485 not enabled (DF1 enabled)
 4 = string is too small
 5 = string is not dimensioned
 6 = JW5 is not in 16-point position

Whenever you attempt to write to a remote node, the BASIC module
places the status of the write into the BTR buffer word 1. The status values
have the same definition as the output values in CALL 93
(page 13 -29).

Chapter
Call Routines 0–68

12

12 -56

Syntax
PUSH type of DH-485 WRITE command
PUSH remote DH-485 device node number
PUSH remote DH-485 device file number
PUSH remote DH-485 device file type
PUSH element offset into destination file
PUSH number of elements to be transferred
PUSH message time-out value(X100MS)
PUSH block transfer write buffer
PUSH 1

PUSH Internal string number
CALL 50

Example
>10 PUSH 64 : CALL 4 : REM SET BLOCK TRANSFER WRITE LENGTH

>20 PUSH 2 : REM SLC TYPED WRITE

>30 PUSH 1 : REM REMOTE SLC NODE NUMBER

>40 PUSH 7 : REM REMOTE SLC FILE NUMBER

>50 PUSH ASC(N) : REM REMOTE SLC FILE TYPE

>60 PUSH 0 : REM ELEMENT OFFSET INTO DESTINATION FILE

>70 PUSH 20 : REM NUMBER OF ELEMENTS TO BE TRANSFERRED

>80 PUSH 10 : REM MESSAGE TIME-OUT VALUE(X100MS)

>90 PUSH 0 : REM LOCAL BTW BUFFER

>100 PUSH 1 : REM ALWAYS 1

>110 P USH 0 : R EM I NTERNAL S TRING NUMBER–UNUSED F OR T HI S E XAMPLE

>120 CALL 50

>130 POP S

>140 IF (S=1) THEN PRINT “CALL 50 DISABLED”

>150 IF (S=2) THEN PRINT “CALL 50 BAD INPUT PARAMETER”

>160 IF (S=3) THEN PRINT “PORT DH485 NOT ENABLED”

Chapter
Call Routines 0–68

12

12 -57

Sample Ladder Logic

(L)
O:001

15

BTW

BLOCK TRANSFER WRITE

Rack

Group

Module

00

1

0

N7:0

N10:10

64

Control Block

Data file

Length

Rung 2:0

15

I:001

Rung 2:3

[END OF FILE]

(EN)

(DN)

(ER)

NContinuous

N10:0

0 Rung enable bit
(N10:0 used as example)

(U)
N10:0

Rung 2:1

(U)

O:001

0

O:001

15

BTR

BLOCK TRANSFER READ

Rack

Group

Module

00

1

0

N6:0

N11:10

1

Control Block

Data file

Length

16

I:001

(EN)

(DN)

(ER)

NContinuous

Rung 2:2

15

N6:0

15

Chapter
Call Routines 0–68

12

12 -58

Undefined. If you execute an undefined call, you receive the error
message, “ERROR–UNSUPPORTED CALL .”

Use CALL 52 to retrieve the current date in a string (dd/mm/yy).

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the number of the string to receive the date. You must use the
STRING statement (see page 11 -37) to allocate a minimum of 9 characters
for the string.

Syntax

PUSH number of string to receive the date
CALL 52

Example

>10 STRING 100,9

>20 PUSH 1: CALL 52: REM PUT DATE IN STRING 1

>30 PRINT $(1)

>40 END

>RUN

30–JAN–94

Undefined. If you execute an undefined call, you receive the error
message, “ERROR–UNSUPPORTED CALL .”

CALL 51

CALL 52: Retrieve Date
String

CALL 53 – 59

Chapter
Call Routines 0–68

12

12 -59

Use this routine to repeat a character and place it in a string. You can use
the string repeat when designing output formats. You cannot repeat more
characters than the string’s maximum length.

Input and Output Arguments
This routine has two input arguments and no output arguments. The first
input argument is the number of times you want to repeat the character.
The second input argument is the number of the string containing the
character you want to repeat.

Syntax
PUSH number of times to repeat character
PUSH number of string containing character to be repeated
CALL 60

Example
>20 STRING 1000,50

>30 $(1)=“*”

>40 PUSH 40: REM THE NUMBER OF TIMES TO REPEAT CHARACTER

>50 PUSH 1: REM WHICH STRING CONTAINS CHARACTER

>60 CALL 60

>70 PRINT $(1)

>80 END

>RUN

**

CALL 60: String Repeat

Chapter
Call Routines 0–68

12

12 -60

Use this routine to append one string to the end of another string.
If the resulting string is longer than the maximum string length, the append
characters are lost. This is a string concatenation assignment.
(Ex. $(1)=$(1)+$(2)).

Input and Output Arguments

This routine has two input arguments and no output arguments. The first
input argument is the string number of the string you want appended.
The second input argument is the string number of the base string.

Syntax
PUSH string number of string to be appended
PUSH string number of the base string
CALL 61

Example
>10 STRING 200,20

>20 $(1)=”How are ”

>30 $(2)= “you?”

>40 PRINT “BEFORE:”,

>50 PRINT “$1=”,$(1),” $2=”,$(2)

>60 PUSH 2 :REM STRING NUMBER OF STRING TO BE APPENDED

>70 PUSH 1 :REM BASE STRING NUMBER

>80 CALL 61 :REM INVOKE STRING CONCATENATION ROUTINE

>90 PRINT “AFTER:”,

>100 PRINT “$1=”,$(1),” $2=”,$(2)

>110 END

>RUN

BEFORE: $1=How are $2=you?

AFTER: $l=How are you? $2=you?

CALL 61: String Append
(Concatenation)

Chapter
Call Routines 0–68

12

12 -61

Use this routine to convert a number or numeric variable into a string.
You must use the STRING statement (see page 11 -37) to allocate a
minimum of 14 characters for the string. If the exponent of the value you
want to convert is 100 or greater, you must allocate 15 characters.
Error checking traps string allocation of less than 14 characters only.

Input and Output Arguments

This routine has two input arguments and no output arguments. The first
input argument is the value you want to convert. The second input
argument is the number of the string to receive the value.

Syntax
PUSH value to be converted
PUSH number of string to receive the value
CALL 62

Example
>10 STRING 100,14

>20 INPUT “ENTER A NUMBER TO CONVERT TO A STRING”,N

>30 PUSH N

>40 PUSH 1: REM CONVERT NUMBER TO STRING1

>50 CALL 62: REM DO THE CONVERSION

>60 PRINT $(1)

>70 END

CALL 62: Number to String
Conversion

Chapter
Call Routines 0–68

12

12 -62

Use this routine to convert the first decimal number found in the string you
specify to a number, and place this number on the argument stack.
Valid numbers and associated characters are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., E,
+, -. The comma is not a valid number character and terminates the
conversion.

Input and Output Arguments

This routine has one input argument and two output arguments. The input
argument is the number of the string you want to convert. The first output
argument is the validity value. The second output argument is the
converted value. If a string contains a number followed by an E followed
by a letter or non-numeric character, it is assumed that no number was
found since the letter is not a valid exponent (UAB701EA returns a zero in
the first output argument indicating that no valid number was in the string).
If the string does not contain a legal value, a zero is returned. A valid
value is between 1 and 255.

Syntax
PUSH value to be converted
CALL 63

POP validity value
POP actual value

Example
>10 STRING 100,14

>20 INPUT “ENTER A STRING TO CONVERT”, $(1)

>30 PUSH 1: REM CONVERT STRING 1

>40 CALL 63: REM DO THE CONVERSION

>50 POP V,N

>60 IF V<>0 THEN PRINT $(1),” “,N: GO TO 80

>70 PRINT “INVALID OR NO VALUE FOUND”

>80 END

CALL 63: String to Number
Conversion

Chapter
Call Routines 0–68

12

12 -63

Use this routine to find a string within a string. It locates the first
occurrence (position) of this string. This routine is similar to the ANSI
BASIC INSTR$(findstr$,str$). (Example: L=INSTR$($(1),$(2))

Input and Output Arguments

This routine has two input arguments and one output argument. The first
input is the string you want to find. The second input is the string you
want to search for a match. The output argument is the location of the
matched string. If the number is not zero then a match was located at the
position the value of the return argument indicates.

Syntax
PUSH string number of string to be found
PUSH base string number
CALL 64

POP return value

Example
>10 REM SAMPLE FIND STRING IN STRING ROUTINE

>20 STRING 1000,20

>30 $(1)=“456”

>40 $(2)=“12345678”

>50 PUSH 1 :REM STRING NUMBER OF STRING TO BE FOUND

>60 PUSH 2 :REM BASE STRING NUMBER

>70 CALL 64 :REM GET LOCATION OF FIRST CHARACTER

>80 POP L

>90 IF L=0 THEN PRINT “NOT FOUND”

>100 IF L>0 THEN PRINT “FOUND AT LOCATION ”,L

>110 END

>RUN

FOUND AT LOCATION 4

READY

CALL 64: Find a String
in a String

Chapter
Call Routines 0–68

12

12 -64

Use this routine to replace a string within a string.

Input and Output Arguments

This routine has three input arguments and no output arguments. The first
input argument is the string number of the new string to replace the old
string. The second input argument is the string number of the old string to
be replaced by the new string. The third input argument is the base string’s
string number.

Syntax
PUSH string number of the replacement string
PUSH string number of the string to be replaced
PUSH base string number
CALL 65

Example
>10 REM SAMPLE OF REPLACE STRING IN STRING

>20 STRING 1000,20

>30 $(0)=“RED-LINES”

>40 $(1)=“RED ”

>50 $(2)=“BLUE”

>60 PRINT “BEFORE: $0=”,$(0)

>70 PUSH 2 :REM STRING NUMBER OF STRING TO REPLACE WITH

>80 PUSH 1 :REM STRING NUMBER OF STRING TO BE REPLACED

>90 PUSH 0 :REM BASE STRING NUMBER

>100 CALL 65 :REM REPLACE STRING IN STRING ROUTINE

>110 PRINT “AFTER: $0=”,$(0)

>120 END

>RUN

BEFORE: $0=RED-LINES

AFTER: $0=BLUE-LINES

CALL 65: Replace a String
in a String

Chapter
Call Routines 0–68

12

12 -65

Use this routine to insert a string within another string.

Input and Output Arguments

This routine has three input arguments and no output arguments. The first
argument is the position at which to begin the insert. The second argument
is the string number of the characters you want to insert into the base
string. The third argument is the string number of the base string.

Syntax
PUSH position to begin insert
PUSH string number of characters to be inserted
PUSH base string number
CALL 66

Example
>10 REM SAMPLE ROUTINE TO INSERT A STRING IN A STRING

>20 STRING 500,15

>30 $(0)+“1234590”

>40 $(1)+“67890”

>50 PRINT “BEFORE: 0$=”,$(0)

>60 PUSH 6 :REM POSITION TO START THE INSERT

>70 PUSH 1 :REM STRING NUMBER OF STRING TO INSERT

>80 PUSH 0 :REM BASE STRING NUMBER

>90 CALL 66 :REM INVOKE INSERT A STRING IN A STRING

>91 REM: REM ROUTINE

>100 PRINT “AFTER: 0$=”,$(0)

>110 END

>RUN

BEFORE: 0$=1234590

AFTER: 0$=123456789090

CALL 66: Insert String in a
String

Chapter
Call Routines 0–68

12

12 -66

Use this routine to delete a string from within another string.

Important: This routine deletes only the first occurrence of the string.

Input and Output Arguments

This routine has two input arguments and no output arguments. The first
argument is the base string number. The second is the string number of the
string you want to delete from the base string.

Syntax
PUSH base string number
PUSH string number of string to be deleted from base string
CALL 67

Example
>10 REM ROUTINE TO DELETE A STRING IN A STRING

>20 STRING 200,14

>30 $(1)=“123456789012”

>40 $(2)=“12”

>50 PRINT “BEFORE: $1=”,$(1)

>60 PUSH 1 :REM BASE STRING NUMBER

>70 PUSH 2 :REM STRING NUMBER OF STRING TO BE DELETED

>80 CALL 67: REM INVOKE STRING DELETE ROUTINE

>90 PRINT “AFTER: $1=”,$(1)

>100 END

>RUN

BEFORE: $1=123456789012

AFTER: $1=3456789012

CALL 67: Delete String
from a String

Chapter
Call Routines 0–68

12

12 -67

Use this routine to determine the length of a string. To properly determine
the length of a string you must terminate the string with a CR character.
If you use the ASC string operator (page 9 -14) to fill the string, you must
add a CR as the last character to terminate the string.

Input and Output Arguments

This routine has one input and one output argument. The input is the string
number on which the routine acts. The output is the actual number of
non-carriage return (CR) characters in this string.

Syntax
PUSH number of string to determine length
CALL 68

POP number of characters in string

Example

>10 REM SAMPLE OF STRING LENGTH

>20 STRING 100,10

>30 $(1)=“1234567”

>40 PUSH 1 : REM BASE STRING

>50 CALL 68 : REM INVOKE STRING LENGTH ROUTINE

>60 POP L : REM GET LENGTH OF BASE STRING

>70 PRINT “THE LENGTH OF”,$(1),” IS ”,L

>80 END

>RUN

THE LENGTH OF 1234567 IS 7

Call Routines
69–127

13

CALL 68: Determine Length
of a String

What’s Next?

Chapter
Call Routines 0–68

12

12 -68

Notes:

13 Chapter

13 -1

Call Routines 69–127

There are 128 BASIC calls. Calls 69 – 127 are described here.
Calls 0 – 68 are described in Chapter 12. Chapter 7 gives you an overview
of how to use these calls within your BASIC program. Use these calls
within your BASIC program or from the command line.

Important: CALL numbers above 127 are not valid and cause the BASIC
module error–ERROR CALL ARGUMENT OUT OF RANGE.

CALL Description Page CALL Description Page

69 undefined 13 -2 99 reset print head pointer 13 -34

70 ROM to RAM program transfer 13 -2 100 download/program assembly language to EEPROM 13 -35

71 ROM/RAM to ROM program transfer 13 -3 101 upload user (E)EPROM code to host 13 -35

72 RAM/ROM return 13 -4 102 undefined 13 -35

73 battery-backed RAM disable 13 -5 103 print PRT1 transmit buffer and pointer 13 -36

74 battery-backed RAM enable 13 -5 104 print PRT1 receive buffer and pointer 13 -37

75 undefined 13 -5 105 reset PRT1 to default settings 13 -37

76 undefined 13 -5 106 undefined 13 -38

77 protected variable storage 13 -6 107 undefined 13 -38

78 set program port communication rate 13 -8 108 enable DF1 driver communications 13 -38

79 set active LED blinking state (no operation) 13 -8 109 print the argument stack 13 -44

80 check battery condition 13 -9 110 print the PRT2 port transmit buffer and pointer 13 -45

81 user PROM check and description 13 -10 111 print the PRT2 receive buffer and pointer 13 -46

82 check user memory module map 13 -11 112 user LED control 13 -47

83 display DH485 port setup 13 -11 113 disable DF1 driver communications 13 -47

84 transfer DH-485 CIF to BASIC input buffer 13 -12 114 transmit DF1 packet 13 -48

85 transfer BASIC output buffer to DH-485 CIF file 13 -13 115 check DF1 status 13 -49

86 check DH-485 interface remote write status 13 -14 116 call user defined assembly language routine 13 -50

87 check DH-485 interface file remote read status 13 -15 117 get DF1 packet length 13 -51

88 BASIC floating point to PLC-5 floating point 13 -16 118 PLC/SLC unsolicited writes 13 -52

89 PLC-5 floating point to BASIC floating point 13 -17 119 reset PRT2 port to default settings 13 -56

90 read remote DH-485 data file to BASIC input buffer 13 -18 120 clear BASIC module I/O buffers 13 -57

91 write BASIC output buffer to remote DH-485 data file 13 -22 121 undefined 13 -57

92 read remote DH-485 CIF to BASIC input buffer 13 -26 122 read remote DF1 PLC data file 13 -58

93 write output buffer to remote DH-485 CIF file 13 -29 123 write to remote DF1 PLC data file 13 -66

94 display current PRT1 port setup 13 -32 124 undefined 13 -74

95 get number of characters in PRT1 buffers 13 -32 125 undefined 13 -74

96 clear PRT1 receive/transmit buffers 13 -33 126 undefined 13 -74

97 enable PRT2 DTR signal 13 -33 127 undefined 13 -74

98 disable PRT2 DTR signal 13 -34

What’s in This Chapter?
Chapter

Chapter
Call Routines 69–127

13

13 -2

Undefined. If you execute an undefined call, you receive the error
message, “ERROR–UNSUPPORTED CALL .”

Use this routine to shift program execution from a running ROM program
to the beginning of the RAM program.

Important: The first line of the RAM program is not executed.
We recommend that you make it a remark.

Important: There must be a next line in the ROM or RAM routine,
otherwise unpredictable events could occur that may destroy the contents
of RAM. For this reason always be sure that at least one END statement
exists following a CALL 70 or 71.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 70

Example

>ROM5

>LIST

10 REM SAMPLE ROM PROG FOR CALL 70

20 PRINT “NOW EXECUTING ROM #5”

30 CALL 70 : REM GO EXECUTE RAM

40 END

>RAM

>LIST

10 REM SAMPLE RAM PROGRAM FOR CALL 70

20 PRINT “NOW EXECUTING RAM”

30 END

>ROM5

>RUN

NOW EXECUTING ROM #5

NOW EXECUTING RAM

CALL 69

CALL 70: ROM to RAM
Program Transfer

Chapter
Call Routines 69–127

13

13 -3

Use this routine to transfer from a running ROM or RAM program to the
beginning of any available ROM program.

Important: The first line of the ROM program is not executed.
We recommend that you make it a remark.

Important: There must be a next line in the ROM or RAM routine,
otherwise unpredictable events could occur that may destroy the contents
of RAM. For this reason always be sure that at least one END statement
exists following a CALL 70 or 71.

Input and Output Arguments

This routine has one input argument and no output arguments. The input is
the ROM to which you want to transfer. If the ROM number does not exist
an invalid program error displays and you enter the Command mode.

Syntax

PUSH beginning of ROM program
CALL 71

Example
>10 REM THIS ROUTINE CALLS AND EXECUTES A ROM ROUTINE

>20 INPUT “ENTER ROM ROUTINE TO EXECUTE”,N

>30 PUSH N

>40 CALL 71

>50 END

>RUN

ENTER ROM ROUTINE TO EXECUTE 4

The user is now executing ROM 4 if it exists. If the ROM routine
requested does not exist the result is:

PROGRAM NOT FOUND.

READY

>

CALL 71: ROM/RAM to ROM
Program Transfer

Chapter
Call Routines 69–127

13

13 -4

Use this routine to return to the routine that called this ROM/RAM routine.
Execution begins on the line after the line that called the ROM/RAM
routine. This routine works one layer deep. You may go back to the last
called program’s next line.

Important: There must be a next line in the ROM or RAM routine,
otherwise unpredictable events could occur that may destroy the contents
of RAM. For this reason always be sure that at least one END statement
exists following a CALL 70 or 71.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 72

Example
>ROM 1

>10 REM SAMPLE PROG FOR CALL 72

>20 PRINT “NOW EXECUTING ROM #1

>30 PUSH 3

>40 CALL 71 : REM EXECUTE ROM #3 THEN RETURN

>50 PRINT “EXECUTING ROM #1 AGAIN”

>60 END

>ROM 3

>10 REM THIS LINE WONT BE EXECUTED

>20 PRINT “NOW EXECUTING ROM #3”

>30 CALL 72

>40 END

With ROM #1 selected:

>RUN

NOW EXECUTING ROM #1

NOW EXECUTING ROM #3

EXECUTING ROM #1 AGAIN

READY

>

CALL 72: RAM/ROM Return

Chapter
Call Routines 69–127

13

13 -5

Use CALL 73 to disable the battery-backed RAM and purge reset. You see
“Battery Backup Disabled” when you execute this call. The next power
loss destroys the contents of RAM. When you reapply power (if JW7 is
enable, page 1 -9), RAM is cleared and battery back-up is automatically
re-enabled.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 73

Example
>CALL 73

CALL 74 enables the battery-backed RAM. You see “Battery Backup
Enabled” when you execute this call. The battery is enabled on power-up
and remains enabled until you execute a CALL 73 or until the battery fails.

Make sure jumper JW7 is set to the “battery enabled” position (page 1 -9).

Input and Output Arguments

This routine has no input or output arguments.

Syntax

CALL 74

Example
>CALL 74

Undefined. If you execute an undefined call, you receive the error
message, “ERROR–UNSUPPORTED CALL” .

CALL 73: Battery-Backed
RAM Disable

CALL 74: Battery-Backed
RAM Enable

CALL 75 – 76

Chapter
Call Routines 69–127

13

13 -6

Use CALL 77 to reserve the top of RAM memory for protected variable
storage. Values are saved if you enabled CALL 74 (page13 -5).
You store values with the ST@ (page11 -35) statement and retrieve them
with the LD@ (page11 -18) statement. Each variable you store requires 6
bytes of storage space.

You must subtract 6 times the number of protected variables you are
storing from MTOP. This reduces the available RAM memory. PUSH this
value onto the stack as the new MTOP address. All appropriate variable
pointers are reconfigured. Do this only in Command mode to ensure
proper operation.

Important:

 Use CALL 77 from Command mode only.

 Do not let the ST@ address write over the MTOP address. This could
alter the value of a variable or string.

 CALL 77 de-allocates all the string memory along with all the string
contents. Therefore, make sure you perform this call before execution
of the string statement.

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the new MTOP address.

Syntax

PUSH new MTOP address
CALL 77

Example
>PRINT MTOP

14335

>PRINT MTOP-12 (2 VARIABLES TIMES 6 BYTES EACH)

14323

>PUSH 14323 (NEW MTOP ADDRESS)

>CALL 77

>10 K = 678 * PI

>20 L = 520

>25 PUSH K

>30 ST@ 14335:REM STORE K IN PROTECTED AREA

>40 PUSH L

>50 ST@ 14329

>55 REM TO RETRIEVE PROTECTED VARIABLES

CALL 77: Protected Variable
Storage

Chapter
Call Routines 69–127

13

13 -7

>60 LD@ 14335:REM REMOVE K FROM PROTECTED AREA

>70 POP K

>80 LD@ 14329

>90 POP L

>100 REM USE LD@ AFTER POWER LOSS AND BATTERY BACK-UP IS USED

Using Protected Variable Storage Area
>PRINT MTOP

14335

>PRINT MTOP-24

14311

>PUSH 14311 (NEW MTOP ADDRESS)

>CALL 77

>90 M1=14335 : REM BEGIN STORING HERE

>100 PUSH A, B, C, D

Using the ST@ and LD@ Commands in a DO Loop
>200 DO

>210 ST@ M1

>220 M1=M1-6 :REM EACH VARIABLE = 6 BYTES

>230 UNTIL M1=MTOP : REM YOU DEFINED THE NEW MTOP W/CALL 77

>290 M1 = 14335

>300 DO

>310 LD@ M1

>320 M1 = M1-6

>330 UNTIL M1 = MTOP

>360 POP A, B, C, D

>370 PRINT A, B, C, D

Using an Array To Set Up the Data
>PRINT MTOP

14335

>PRINT MTOP-24

14311

>PUSH 14311 (NEW MTOP ADDRESS)

>CALL 77

>100 DIM A(4)

>110 DATA 10, 20, 30, 40

>120 FOR I = 1 TO 4 : READ A(I) : NEXT I

Chapter
Call Routines 69–127

13

13 -8

Use CALL 78 to change the program port communication rate from its
default value (1200 bit/s) to one of the following: 300, 600, 1200, 2400,
4800, 9600 or 19200 bit/s. The default communication rate for the
program port is 1200 bit/s if port PRT1 is configured as the program port
or 19200 bit/s if port DH485 is configured as the program port. PUSH the
desired communication rate and CALL 78. The program port remains at
this communication rate unless CALL 73 (page 13 -5) is invoked or one
of these conditions is met:

 battery is dead or has been removed

 battery-backup capacitor is discharged

 if a PROG1 or PROG2 is executed and the EEPROM is removed or not
programmed

 power is cycled

If this happens the communication rate of ports PRT1 and PRT2 defaults to
1200 bit/s and the DH485 port defaults to 19200 bit/s.

See also the MODE statement (page 11 -20)

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is the communication rate you want (300, 600, 1200, 2400, 4800,
9600 or 19200 bit/s).

Syntax
PUSH desired communication rate
CALL 78

Example
>10 PUSH 4800

>20 CALL 78

This call does nothing. The active LED is supposed to blink while the
BASIC module is in Command mode and remain solid while the BASIC
module is in Run mode.

CALL 78: Set Program Port
Communication Rate

CALL 79: Set the Active
LED Blinking State (No
Operation)

Chapter
Call Routines 69–127

13

13 -9

Use CALL 80 to check the module’s battery condition.

Refer to Chapter 3 for information on how to change the battery.

Important: Refer to Guidelines for Handling Lithium Batteries
(publication number AG-5.4 to properly dispose of the
lithium battery.

Input and Output Arguments

This routine has no input arguments and one output argument. The output
argument is the status of the battery:

 0 = battery is okay
 1 = battery is low

Syntax
CALL 80

POP battery status

Example
>10 CALL 80

>20 POP C

>30 IF C <>0 THEN PRINT “BATTERY LOW”

>40 END

CALL 80: Check Battery
Condition

Chapter

Chapter
Call Routines 69–127

13

13 -10

Use CALL 81 before storing a program in the EEPROM memory.
This routine:

 determines the number of memory module programs

 determines the number of bytes left in the memory module

 determines the number of bytes in the RAM program

 prints a message indicating if enough space is available in the memory
module for the RAM program

 checks memory module checksum if program is found

 prints a caution message is checksum fails

Important: CALL 81 cannot detect a defective memory module.

Input and Output Arguments

This routine has no input arguments and no output arguments.

Syntax
CALL 81

Example

>CALL 81

Number of BASIC programs in (E)EPROM.......... 3

Available bytes to end of user (E)EPROM....... 7944

Available bytes to beginning of assembly pgm.. 3848

Length of BASIC program in RAM................ 76

Program will fit in (E)EPROM.

READY

>

CALL 81: User PROM Check
and Description

Chapter
Call Routines 69–127

13

13 -11

Use CALL 82 to check the user PROM and display a map of where all the
BASIC programs are stored. Use this routine as an aid for assembly
language programming. With this call you can determine where the empty
space in the memory module is located and how much space is available.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 82

Example
>CALL 82

 8010H –– 805CH ––> ROM 1

 805DH –– 80A9H ––> ROM 2

 80AAH –– 80F6H ––> ROM 3

 80F7H –– FFFFH ––> UNUSED

Use this routine to display the current DH485 port configuration on the
terminal. Enter CALL 83 from the Command mode.

Input and Output Arguments

This routine has no input or output arguments.

Syntax

CALL 83 Return

Example
>CALL 83

19200 BAUD

Host Node Address = O

Module Node Address = 1

Maximum Node Address = 31

CALL 82: Check User
Memory Module Map

CALL 83: Display DH485
Port Parameters

Chapter
Call Routines 69–127

13

13 -12

Use CALL 84 to transfer up to 40 words starting at the designated offset of
the DH-485 Common Interface File to the BASIC module input buffer
starting at the same designated offset from word 0.

This call does not interrupt nor is it interrupted by a DH-485 read or write
from or to the DH-485 common interface file.

Input and Output Arguments

This routine has two input arguments and one output argument. The first
input argument is the starting offset in the DH-485 Common Interface File
and the BASIC module input buffer (100 to 139). The second input
argument is the length in words to be transferred (1 to 40). The output
argument is the status of the call:

 0 = successful transfer
 1 = illegal starting offset; transfer does not take place
 2 = illegal length; transfer does not take place

Syntax
PUSH starting word offset in DH-485 interface file
PUSH number of words to be transferred
CALL 84

POP transfer status

Example
>1 REM EXAMPLE PROGRAM

>40 PUSH 0 : REM OFFSET ADDRESS = 0

>50 PUSH 32 : REM WORD OFFSET = 32

>60 CALL 84 : REM TRANSFER THE DATA TO THE BASIC INPUT BUFFER

>70 POP R : REM GET THE OUTPUT ARGUMENT

>80 IF (R<>0) THEN PRINT “TRANSFER ERROR CODE = ”,R

>90 REM PRINT ERROR

CALL 84: Transfer DH-485
Common Interface File to
BASIC Input Buffer

Chapter
Call Routines 69–127

13

13 -13

Use CALL 85 to transfer up to 40 words starting at the designated offset of
the BASIC output buffer to the DH-485 Common Interface File starting at
the same designated offset from word 0.

This call does not interrupt nor is it interrupted by a DH-485 read or write
from or to the DH-485 common interface file.

Word integrity is guaranteed during this transfer. File integrity is not.

Input and Output Arguments

This routine has two input arguments and one output argument. The first
input argument is the starting word offset (0 – 127) of the DH-485
Common Interface File and the BASIC output buffer. The second input
argument is the length in words (1 to 40) to be transferred from the BASIC
module output buffer to the DH-485 Common Interface File.

The output argument specifies the transfer status. It can have one of these
values:

 0 = successful transfer
 1 = illegal starting offset; transfer does not take place
 2 = illegal length; transfer does not take place

Syntax
PUSH starting word offset in DH-485 interface file
PUSH number of words to be transferred
CALL 85

POP transfer status

Example
>1 REM EXAMPLE PROGRAM

>40 PUSH 31 : REM OFFSET ADDRESS = 31

>50 PUSH 3 : REM WORD LENGTH = 3

>60 CALL 85 : REM TRANSFER DATA TO DH-485 CIF

>70 POP R

>80 IF R<>0 PRINT “TRANSFER ERROR CODE = ”,R

>90 REM PRINT ERROR

READY

>RUN

READy

CALL 85: Transfer BASIC
Output Buffer to DH-485
Common Interface File

Chapter
Call Routines 69–127

13

13 -14

Use CALL 86 to determine if the DH-485 Common Interface File located
in the BASIC module was updated since the last time you checked.

Input and Output Arguments

This routine has no input arguments and one output argument. The output
argument is the DH-485 interface file remote write status:

 0 – a device on the DH-485 Serial Communications Link has not written
to the DH-485 Serial Common Interface File since the last time you
executed this call or since you powered up the BASIC module,
whichever occurred last.

 1 – a device on the DH-485 Serial Communications Link has written to
the DH-485 Common Interface File since the last time you executed this
call or since you powered up the BASIC module, whichever occurred
last.

Syntax
CALL 86

POP DH-485 interface file remote write status

Example
>100 CALL 86 : REM CHECK FILE STATUS

>110 POP X : REM GET THE STATUS

>120 IF(X<>1) THEN GOTO 100 : REM WAIT ON THE DATA

CALL 86: Check DH-485
Interface File Remote Write
Status

Chapter
Call Routines 69–127

13

13 -15

Use CALL 87 to determine if the DH-485 Common Interface File located
in the BASIC module was read by a device on the DH-485 Serial
Communications Link since the last time you checked.

Input and Output Arguments

This routine has no input arguments and one output argument. The output
argument is the DH-485 interface file remote read status:

 0 – a device has not read from the DH-485 Common Interface File since
the last time you executed this call or since you powered up the BASIC
module, whichever occurred last.

 1 – a device on the DH-485 Serial Communications Link has read the
DH-485 Common Interface File since the last time you executed this
call or since you powered up the BASIC module, whichever occurred
last.

Syntax
CALL 87

POP DH-485 interface file remote read status

Example
>1 REM EXAMPLE PROGRAM

>100 CALL 87 : REM CHECK FILE STATUS

>110 POP X : REM GET THE STATUS

>120 IF (X<>1) GOTO 100: REM WAIT ON DATA TO BE READ

CALL 87: Check DH-485
Interface File Remote Read
Status

Chapter
Call Routines 69–127

13

13 -16

Use this call to convert BASIC floating point to PLC-5 floating point in a
two-word format and place the converted value in the block transfer read
buffer. See also CALL 89.

 See Chapter 8 for more information.

The BASIC module floating point number is an 8-digit BCD floating
point number. The range of the BASIC module floating point number is;

±1E–127 to ±.99999999E+127

The PLC-5 floating point number is a 7-digit binary floating point number
(IEEE Float 32- bit value). The range of the PLC-5 floating point number:

±1.1754944E–38 to ±3.4028237E+38

The BASIC module has a floating point range larger than the floating point
range of the PLC-5 processor. If CALL 88 attempts to convert a number
larger than ±3.4028237E+38, the converted number is assigned a value of
±3.4028237E+38. If CALL 88 attempts to convert a number smaller than
±1.1754944E–38 , the converted number is assigned a value of
±1.1754944E–38 .

PLC-5 floating point numbers are stored in 2 words of the BTR buffer

Important: Due to the fact that the PLC-5 floating point number is a
7-digit floating point number, and the BASIC module is an 8-digit floating
point number, some round off error may be introduced during number
conversions.

Input and Output Arguments

This routine has two input arguments and no output arguments. The first
input argument is the floating point value you want to convert. The second
input argument is the first word in the BTR buffer (1 to 63) to receive the
converted value.

Syntax
PUSH number to convert
PUSH output buffer to receive converted value
CALL 88

Example
>20 PUSH V :REM V F.P. NUMBER TO CONVERT

>30 PUSH 1 :REM WORD 1 and 2 of BTR BUFFER GETS A VALUE OF V

>40 CALL 88 :REM CONVERT VALUE

CALL 88: BASIC Floating
Point to PLC-5 Floating
Point

Chapter

Chapter
Call Routines 69–127

13

13 -17

Use this call to convert PLC-5 floating point to BASIC floating point.
See also CALL 88.

 See Chapter 8 for more information.

The PLC-5 floating point number is a 7-digit binary floating point number
(IEEE Float 32- bit value). The range of the PLC-5 floating point number:

±1.1754944E–38 to ±3.4028237E+38

The BASIC module floating point number is an 8-digit BCD floating
point number. The range of the BASIC module floating point number is;

±1E–127 to ±.99999999E+127

PLC-5 floating point numbers are stored in 2 words of the BTW buffer

Important: Due to the fact that the PLC-5 floating point number is a
7-digit floating point number, and the BASIC module is an 8-digit floating
point number, some round off error may be introduced during number
conversions.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the number (1 to 63) of the first word (PLC-5 floating point is sent to the
BASIC module in two processor words) in the BTW buffer you want to
convert. The output argument is the converted value.

Syntax
PUSH number of word to convert
CALL 89

POP converted value

Example

>50 PUSH 10 :REM CONVERT 10th and 11th WORD OF BTW BUFFER

>60 CALL 89 :REM CONVERT VALUE

>70 POP W :REM GET CONVERTED VALUE–STORE IN VARIABLE W

CALL 89: PLC-5 Floating
Point to BASIC Floating
Point

Chapter

Chapter
Call Routines 69–127

13

13 -18

Use CALL 90 to read up to 40 words from the designated node address,
file number, file type, and element offset of a remote DH-485 data file to
the BASIC module input buffer starting at word 100.

Input and Output Arguments

This routine has six input arguments and one output argument.

Argument Description Page

input 1 node address of the remote device (0–31) 13 -18

input 2 file number of the remote device (0–255) to be read 13 -18

input 3 file type read from the remote device 13 -18

input 4 starting element offset within the file on the remote
device (0 to 32767)

13 -19

input 5 number of elements to be transferred 13 -19

input 6 message time-out value 13 -19

output 1 call status 13 -20

Input Argument One
The first input argument is the node address of the remote device (0 to 31).
If the number is not within the range 0 to 31, then the output argument
equals 10, and the read message does not take place.

Input Argument Two
The second input argument is the file number on the remote device (0 to
255) to be read. If the number is not within the range 0 to 255, then the
output argument equals 11, and the read message does not take place.

Input Argument Three
The third input argument is the file type read from the remote device.
If the file type is not one of the valid types listed in the table, then the
output argument equals 241, and the read message does not take place.

File type File type code Words/Element

integer file ASC(N) 1 word/element

status file ASC(S) 1 word/element

counter file ASC(C) 3 words/element

timer file ASC(T) 3 words/element

bit file ASC(B) 1 word/element

control file ASC(R) 3 words/element

CALL 90: Read Remote
DH-485 Data File to BASIC
Input Buffer

Chapter
Call Routines 69–127

13

13 -19

Input Argument Four
The fourth input argument is the starting element offset within the file on
the remote device (0 to 32767). If the number is not within the range 0 to
32767, then the output argument equals 12, and the transfer does not take
place.

Important: The offset is twice of what is expected. For example, if an
offset of 3 is PUSHed, the data is written to the remote DH-485 data file
beginning at element 6.

Input Argument Five
The fifth input argument is the number of elements to be transferred. If the
number is not within the valid length range specified in the table, then the
output argument equals 13, and the transfer does not take place.

File type code Valid length range

ASC(N) 1 to 40

ASC(S) 1 to 40

ASC(C) 1 to 13

ASC(T) 1 to 13

ASC(B) 1 to 40

ASC(R) 1 to 13

Input Argument Six
The sixth input argument is the message time-out value. This value is the
number of hundreds of milliseconds that are allowed to receive the read
response (1 to 50 = 0.1 to 5.0 seconds). If the read response is not received
within this time, the message aborts with the output argument equal to 55.
If the number is not within the range 1 to 50, the output argument equals
14, and the transfer does not take place.

The read data from the remote device is read into the BASIC module input
buffers starting at word 100 and filling as many words as specified by the
element length of the message.

Chapter
Call Routines 69–127

13

13 -20

Output Argument One
The output argument specifies the status of the message instruction.
Upon return from the call, the output argument has this definition:

Decimal
output

 Hexadecimal
 output

Description

0 00 successful completion

2 02 target node cannot accept the message at this time

3 03 target node cannot respond because message is too
large

4 04 target node cannot respond because it does not
understand the command parameters

5 05 BASIC module is off-line (not on link)

6 06 target node cannot respond because requested function
is not available

7 07 target node does not respond

10 0A BASIC module detects illegal target node address

11 0B BASIC module detects illegal file number

12 0C BASIC module detects illegal target file element offset

13 0D BASIC module detects illegal target file length

14 0E BASIC module detects illegal time-out value

16 10 target node cannot respond because of incorrect
command parameters or unsupported command

55 37 message timed out (time-out value exceeded)

80 50 target node is out of memory

96 60 target node cannot respond because file is protected

231 E7 target node cannot respond because length requested
is too large

235 EB target node cannot respond because target node denies
access

236 EC target node cannot respond because requested function
is currently unavailable

241 F1 BASIC module detects illegal target file type

250 FA target node cannot respond because another node is
file owner (has sole file access)

251 FB target node cannot respond because another node is
program owner (has sole access to all files)

Chapter
Call Routines 69–127

13

13 -21

Syntax
PUSH remote device node address
PUSH remote device file number
PUSH remote device file type
PUSH starting element offset (x2) of remote device file
PUSH number of elements to be transferred
PUSH message time-out value
CALL 90

POP status of message instruction

Example
>10 PUSH 1 : REM REMOTE NODE ADDRESS = 1

>20 PUSH 5 : REM REMOTE FILE 5

>30 PUSH ASC(C) : REM FILE TYPE = COUNTER

>40 PUSH 0 : REM OFFSET = 0

>50 PUSH 10 : REM ELEMENT LENGTH = 10 = 30 WORDS

>60 PUSH 5 : REM TIME-OUT = 0.5 SECONDS

>70 CALL 90

>80 POP R : REM GET THE OUTPUT ARGUMENT

>90 IF (R<>0) THEN PRINT “READ ERROR CODE =”,R

READY

>RUN

READ ERROR CODE = 5

Chapter
Call Routines 69–127

13

13 -22

Use CALL 91 to write up to 40 words starting at word 100 of the BASIC
module output buffer to the remote DH-485 data file at the designated node
address, file number, file type, and element offset.

Input and Output Arguments

This routine has six input arguments and one output argument.

Argument Description Page

input 1 node address of the remote device (0–31) 13 -22

input 2 file number on the remote device (0–255) 13 -22

input 3 file type written to the remote device 13 -22

input 4 starting element offset within the file on the remote
device (0 to 32767)

13 -23

input 5 number of elements to be transferred 13 -23

input 6 message time-out value 13 -23

output 1 call status 13 -24

Input Argument One
The first input argument is the node address of the remote device (1 to 31).
If the number is not within the range 1 to 31, then the output argument
equals 10, and the write message does not take place.

Input Argument Two
The second input argument is the file number on the remote device (0 to
255). If the number is not within the range 0 to 255, then the output
argument equals 11, and the write message does not take place.

Input Argument Three
The third input argument is the file type written to the remote device.
If the file type is not one of the valid types listed in the table, then the
output argument equals 241, and the write message does not take place.

File type File type code Words/Element

integer file ASC(N) 1 word/element

status file ASC(S) 1 word/element

counter file ASC(C) 3 words/element

timer file ASC(T) 3 words/element

bit file ASC(B) 1 word/element

control file ASC(R) 3 words/element

CALL 91: Write BASIC
Output Buffer to Remote
DH-485 Data File

Chapter
Call Routines 69–127

13

13 -23

Input Argument Four
The fourth input argument is the starting element offset within the file on
the remote device (0 to 255). If the number is not within the range (0 to
255), then the output argument equals 12, and transfer does not take place.

Important: The offset is twice of what is expected. For example, if an
offset of 3 is PUSHed, the data is written to the remote DH-485 data file
beginning at element 6.

Input Argument Five
The fifth input argument is the number of elements to be transferred. If the
number is not within the range specified below, then the output argument
equals 13, and the transfer does not take place.

File type Valid length range

ASC(N) 1 to 40

ASC(S) 1 to 40

ASC(C) 1 to 13

ASC(T) 1 to 13

ASC(B) 1 to 40

ASC(R) 1 to 13

Input Argument Six
The sixth input argument is the message time-out value. This value is the
number of hundreds of milliseconds that are allowed to receive the write
response (1 to 50 = 0.1 to 5.0 seconds). If the write response is not
received within this time, the message aborts with the output argument
equal to 55. If the number is not within the range 1 to 50, the output
argument equals 14, and the transfer does not take place.

The write data from the BASIC module output buffer is written to the
remote device starting at word 100 and filling as many words as specified
by the element length of the message.

Chapter
Call Routines 69–127

13

13 -24

Output Argument One
The output argument specifies the status of the message instruction.
Upon return from the call, the output argument has this definition:

Decimal
output

 Hexadecimal
 output

Description

0 00 successful completion

2 02 target node cannot accept the message at this time

3 03 target node cannot respond because message is too
large

4 04 target node cannot respond because it does not
understand the command parameters

5 05 BASIC module is off-line (not on link)

6 06 target node cannot respond because requested function
is not available

7 07 target node does not respond

10 0A BASIC module detects illegal target node address

11 0B BASIC module detects illegal file number

12 0C BASIC module detects illegal target file element offset

13 0D BASIC module detects illegal target file length

14 0E BASIC module detects illegal time-out value

16 10 target node cannot respond because of incorrect
command parameters or unsupported command

55 37 message timed out (time-out value exceeded)

80 50 target node is out of memory

96 60 target node cannot respond because file is protected

231 E7 target node cannot respond because length requested
is too large

235 EB target node cannot respond because target node denies
access

236 EC target node cannot respond because requested function
is currently unavailable

241 F1 BASIC module detects illegal target file type

250 FA target node cannot respond because another node is
file owner (has sole file access)

251 FB target node cannot respond because another node is
program owner (has sole access to all files)

This call is implemented as a Protected Typed Logical Write with two
address fields.

Refer to the DF1 Protocol and Command Set Reference Manual
(publication number 1770-6.5.16) for detailed information on DH-485.

Chapter
Call Routines 69–127

13

13 -25

Syntax

PUSH remote device node address
PUSH remote device file number
PUSH remote device file type
PUSH starting element offset (x2) of remote device file
PUSH number of elements to be transferred
PUSH message time-out value
CALL 91

POP status of message instruction

Example

>1 REM EXAMPLE PROGRAM

>10 PUSH 1 : REM REMOTE NODE ADDRESS = 1

>20 PUSH 7 : REM REMOTE FILE 7

>30 PUSH ASC(N) : REM FILE TYPE = INTEGER

>40 PUSH 0 : REM OFFSET = 0

>50 PUSH 10: REM WORD LENGTH = 10

>60 PUSH 5 : REM THE TIME-OUT VALUE = 0.5 SECOND

>70 CALL 91 : REM WRITE DATA FROM OUTPUT BUFFER

>80 POP R : REM GET THE OUTPUT ARGUMENT

>90 IF R<>0 PRINT “READ ERROR CODE =”,R

READY

>RUN

READ ERROR CODE = 5

Chapter
Call Routines 69–127

13

13 -26

Use CALL 92 to read up to 40 words from the remote DH-485 Common
Interface File of the designated node address, starting at the designated
word offset to the BASIC module input buffer starting at word 100.

Input and Output Arguments

This routine has four input arguments and one output argument.

Argument Description Page

input 1 node address of the remote device (1–31) 13 -26

input 2 starting word offset within the file on the remote device
(0 to 255)

13 -26

input 3 number of words to be transferred 13 -26

input 4 message time-out value 13 -26

output 1 call status 13 -27

Input Argument One
The first input argument is the node address of the remote device (1 to 31).
If the number is not within the range 1 to 31, then the output argument
equals 10, and the read message does not take place.

Input Argument Two
The second input argument is the starting word offset within the file on the
remote device (0 to 255). If the number is not within the range 0 to 255,
then the output argument equals 12, and the transfer does not take place.

Important: The offset is twice what you expect. For example, if an offset
of 3 is PUSHed, the data is written to the remote DH-485 data file
beginning at element 6.

Input Argument Three
The third input argument is the number of words to be transferred. If the
number is not within the range (1 to 40), then the output argument equals
13, and the transfer does not take place.

Input Argument Four
The fourth input argument is the message time-out value. This value is the
number of hundreds of milliseconds that are allowed to receive the read
response (1 to 50 = 0.1 to 5.0 seconds). If the read response is not received
within this time, the message aborts with the output argument equal to 55.
If the number is not within the range 1 to 50, the output argument equals
14, and the transfer does not take place.

The read data from the remote device is read into the BASIC module input
buffer starting at word 100 and filling as many words as specified by the
word length of the message.

CALL 92: Read Remote
DH-485 Common Interface
File to BASIC Input Buffer

Chapter
Call Routines 69–127

13

13 -27

Output Argument One
The output argument specifies the status of the message instruction.
Upon return from the call, the output argument has these definitions:

Decimal
output

Hexadecimal
output

Description

0 00 successful completion

2 02 target node cannot accept the message at this time

3 03 target node cannot respond because message is too
large

4 04 target node cannot respond because it does not
understand the command parameters

5 05 BASIC module is off-line (not on link)

6 06 target node cannot respond because requested function
is not available

7 07 target node does not respond

10 0A BASIC module detects illegal target node address

11 0B BASIC module detects illegal file number

12 0C BASIC module detects illegal target file element offset

13 0D BASIC module detects illegal target file length

14 0E BASIC module detects illegal time-out value

16 10 target node cannot respond because of incorrect
command parameters or unsupported command

55 37 message timed out (time-out value exceeded)

80 50 target node is out of memory

96 60 target node cannot respond because file is protected

231 E7 target node cannot respond because length requested
is too large

235 EB target node cannot respond because target node denies
access

236 EC target node cannot respond because requested function
is currently unavailable

241 F1 BASIC module detects illegal target file type

250 FA target node cannot respond because another node is
file owner (has sole file access)

251 FB target node cannot respond because another node is
program owner (has sole access to all files)

Chapter
Call Routines 69–127

13

13 -28

Syntax
PUSH remote device node address
PUSH starting element offset (x2) of remote device file
PUSH number of words to be transferred
PUSH message time-out value
CALL 92

POP status of message instruction

Example
>1 REM EXAMPLE PROGRAM

>30 PUSH 1 : REM REMOTE NODE ADDRESS = 1

>40 PUSH 0 : REM OFFSET = 0

>50 PUSH 10 : REM WORD LENGTH = 10

>60 PUSH 5 REM TIME-OUT VALUE = 0.5 SECONDS

>70 CALL 92

>80 POP R : REM GET THE OUTPUT ARGUMENT

>90 IF (R<>0) THEN PRINT “READ ERROR CODE IS”,R

>100 REM PRINT ERROR

READY

>RUN

READ ERROR CODE IS 5

Chapter
Call Routines 69–127

13

13 -29

Use CALL 93 to write up to 40 words starting at word 100 of the BASIC
module output buffer to the remote DH-485 Common Interface File at the
designated node address, starting at the designated word offset.

Input and Output Arguments

This routine has four input arguments and one output argument.

Argument Description Page

input 1 node address of the remote device (1–31) 13 -29

input 2 starting word offset within the file on the remote device
(0 to 255)

13 -29

input 3 number of words to be transferred 13 -29

input 4 message time-out value 13 -29

output 1 call status 13 -30

Input Argument One
The first input argument is the node address of the remote device (1–31).
If the number is not within the range 1 to 31, then the output argument
equals 10, and the write message does not take place.

Input Argument Two
The second input argument is the starting word offset within the file on the
remote device (0 to 255). If the number is not within the range (0 to 255),
then the output argument equals 12, and the transfer does not take place.

Important: The offset is twice what you expect. For example, if an offset
of 3 is PUSHed, the data is written to the remote DH-485 data file
beginning at element 6.

Input Argument Three
The third input argument is the number of words to be transferred. If the
number is not within the range specified below, then the output argument
equals 13, and the transfer does not take place.

Input Argument Four
The fourth input argument is the message time-out value. This value is the
number of hundreds of milliseconds that are allowed to receive the write
response (1 to 50 = 0.1 to 5.0 seconds). If the write response is not
received within this time, the message aborts with the output argument
equal to 55. If the number is not within the range 1 to 50, the output
argument equals 14, and the transfer does not take place.

The data from the BASIC module output buffer starting at word 100 is
written to the remote common interface file starting at the specified word,
and filling as many words as specified by the word length of the message.

CALL 93: Write Output
Buffer to Remote DH-485
Common Interface File

Chapter
Call Routines 69–127

13

13 -30

Output Argument One
The output argument specifies the status of the message instruction.
Upon return from the call, the output argument has this definition.

Decimal
output

Hexadecimal
output

Description

0 00 successful completion

2 02 target node cannot accept the message at this time

3 03 target node cannot respond because message is too
large

4 04 target node cannot respond because it does not
understand the command parameters

5 05 BASIC module is off-line (not on link)

6 06 target node cannot respond because requested function
is not available

7 07 target node does not respond

10 0A BASIC module detects illegal target node address

11 0B BASIC module detects illegal file number

12 0C BASIC module detects illegal target file element offset

13 0D BASIC module detects illegal target file length

14 0E BASIC module detects illegal time-out value

16 10 target node cannot respond because of incorrect
command parameters or unsupported command

55 37 message timed out (time-out value exceeded)

80 50 target node is out of memory

96 60 target node cannot respond because file is protected

231 E7 target node cannot respond because length requested
is too large

235 EB target node cannot respond because target node denies
access

236 EC target node cannot respond because requested function
is currently unavailable

241 F1 BASIC module detects illegal target file type

250 FA target node cannot respond because another node is
file owner (has sole file access)

251 FB target node cannot respond because another node is
program owner (has sole access to all files)

Chapter
Call Routines 69–127

13

13 -31

Syntax
PUSH remote device node address
PUSH starting element offset (x2) of remote device file
PUSH number of words to be transferred
PUSH message time-out value
CALL 93

POP status of message instruction

Example
>1 REM EXAMPLE PROGRAM

>30 PUSH 1 : REM REMOTE NODE ADDRESS = 1

>40 PUSH 0 : REM OFFSET = 0

>50 PUSH 10 : REM WORD LENGTH = 10

>60 PUSH 5 : REM THE TIME-OUT VALUE = 0.5 SECONDS

>70 CALL 93 : REM WRITE DATA FROM BASIC OUTPUT BUFFER

>80 POP R : REM GET THE OUTPUT ARGUMENT

>90 IF R<>0 THEN PRINT READ ERROR CODE = ”,R

READY

>RUN

READ ERROR CODE = 5

Chapter
Call Routines 69–127

13

13 -32

Use CALL 94 to display the current PRT1 port configuration on the
terminal screen.

Input and Output Arguments

This routine has no input or output arguments.

Syntax

CALL 94 Return

Example
>CALL 94

COMMUNICATION RATE= 9600

DATA BITS= 8

PARITY= NONE

STOP BITS= 1

HANDSHAKING= SOFTWARE

Use CALL 95 to retrieve the number of characters in either the receive or
transmit buffer of port PRT1.

Input and Output Arguments

This routine has one input and one output argument. The input argument is
the buffer you want to examine:

 0 for the transmit buffer
 1 for the receive buffer

The output argument is the number of characters.

Syntax
PUSH buffer selection
CALL 95

POP number of characters

Example
>1 REM EXAMPLE PROGRAM

>10 PUSH 0 : REM EXAMINES THE TRANSMIT BUFFER

>20 CALL 95

>30 POP X : REM GET THE NUMBER OF CHARACTERS

>40 PRINT “NUMBER OF CHARACTERS IN PRT1 TRANSMIT BUFFER IS

”,X

>50 END

CALL 94: Display Current
PRT1 Port Setup

CALL 95: Get Number of
Characters in PRT1 Buffers

Chapter
Call Routines 69–127

13

13 -33

Use CALL 96 to clear port PRT1 receive and transmit buffers.

Input and Output Arguments

This routine has one input and no output argument. The input argument is
the buffer you want to clear:

 0 to clear the transmit buffer
 1 to clear the receive buffer
 2 to clear both buffers

Syntax
PUSH buffer selection
CALL 96

Example
>1 REM EXAMPLE PROGRAM

>10 PUSH 0 : CALL 96 : REM CLEAR PRT1 TRANSMIT BUFFER

>30 END

Use CALL 97 to enable the Data Terminal Ready (DTR) signal from port
PRT2. The DTR signal is enabled by default when you power up the
BASIC module. This call re-enables the DTR if it has been disabled by
CALL 98.

Input and Output Arguments

This routine has no input and no output arguments.

Syntax

CALL 97

Example
>1 REM EXAMPLE PROGRAM

>10 CALL 97 : REM ENABLE DTR SIGNAL

>30 END

CALL 96: Clear PRT1
Receive/Transmit Buffers

CALL 97: Enable Port PRT2
DTR Signal

Chapter
Call Routines 69–127

13

13 -34

Use CALL 98 to disable the Data Terminal Ready (DTR) signal from
PRT2. CALL 97 re-enables the DTR signal.

Input and Output Arguments

This routine has no input and no output arguments.

Syntax

CALL 98

Example
>1 REM EXAMPLE PROGRAM

>10 CALL 98 : REM DISABLE DTR SIGNAL

>30 END

Use CALL 99 to reset the internal print head character counter of your
printer when printing out wide forms. This call prevents the automatic
CR/LF at character 79. You must keep track of the characters in each line.

Input and Output Arguments

This routine has no input and no output arguments.

Syntax

CALL 99

Example

>10 REM EXAMPLE PROGRAM

>20 REM THIS PRINTS TIME BEYOND 80TH COLUMN

>30 PRINT TAB(79)

>40 CALL 99

>50 PRINT TAB(41), “TIME -”,

>60 PRINT H,“:”,M,“:”,S

>70 END

CALL 98: Disable Port PRT2
DTR Signal

CALL 99: Reset Print Head
Pointer

Chapter
Call Routines 69–127

13

13 -35

Use this call to store a file in user EEPROM through the program port of
the BASIC module. The file must be in Intel Hex format. No checks are
made on the addresses you are programming. An error message is
generated to the program port if the EEPROM programming sequence
fails. This call allows you to program assembly language programs in the
BASIC module. The file (in Intel HEx Format) defines the address space in
user EEPROM you can use for storage. This address space is controlled by
“ORG” directives of the assembly language source. Further, Intel Hex
Format defines an “END OF FILE” so the module knows when to stop.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 100

Example
>CALL 100

Use this call to convert data within the address range to Intel Hex format,
and print the information to the program port. An error message prints if
the addresses are not consistent.

Input and Output Arguments

This routine has two input arguments and no output arguments. The first
input is the starting address. The second input is the ending address.

Syntax
PUSH starting address
PUSH ending address
CALL 101

Example
>10 PUSH X

>20 PUSH Y

>30 CALL 101

Undefined. If you execute an undefined call, you receive the error
message, “ERROR–UNSUPPORTED CALL .”

CALL 100: Download and
Program Assembly
Language Code to EEPROM

CALL 101: Upload User
(E)EPROM Code to Host

CALL 102

Chapter
Call Routines 69–127

13

13 -36

Use CALL 103 to print the complete PRT1 transmit buffer with address,
front pointer, and number of characters in the buffer to the console screen.

Use this information as a troubleshooting aid. It does not affect the
contents of the buffer.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 103

Example
>CALL 103

PRT1 Output Queue

6D00H 3 AH 3 1H 3 0H 3 8H 3 0H 3 4H 3 0H 3 0H 3 0H 3 9H 3 7H 3 4H 3 9H 3 0H 4 4H 3 0H
6D10H 4 1H 3 0H 3 0H 3 3H 4 3H 4 1H 3 0H 3 4H 4 1H 4 5H 4 1H 3 4H 4 6H 4 1H 3 6H 3 3H
6D20H 3 3H 3 0H 3 3H 3 0H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H
6D30H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 4H 3 8H
6D40H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H
6D50H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 4H 4 8H 2 0H 3 3H 3 8H 4 8H 0 DH 0 AH 2 0H
6D60H 3 6H 4 4H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 4H 3 8H
6D70H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 4H 4 8H 2 0H 3 3H 3 8H 4 8H 0 DH 0 AH 2 0H
6D80H 3 6H 4 4H 3 7H 3 0H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 2H
6D90H 4 8H 2 0H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H
6DA0H 4 8H 2 0H 3 3H 3 4H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H
6DB0H 4 8H 2 0H 3 3H 3 8H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 4H
6DC0H 4 8H 2 0H 3 3H 3 8H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 2H
6DD0H 4 8H 2 0H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H
6DE0H 4 8H 2 0H 3 3H 3 4H 4 8H 0 DH 0 AH 2 0H 3 6H 4 4H 4 3H 3 0H 4 8H 2 0H 3 4H 3 8H
6DF0H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 3H 3 8H 4 8H 2 0H 3 4H 3 4H

Output queue front pointer is: 6D29H

CALL 103: Print PRT1
Transmit Buffer and Pointer

Chapter
Call Routines 69–127

13

13 -37

Use CALL 104 to print the complete PRT1 receive buffer with address,
front pointer, and number of characters in the buffer to the console screen.

Use this information as a troubleshooting aid. It does not affect the
contents of the buffer.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 104

Example
>CALL 104

 PRT1 Input Queue

6C00H 33H 0DH 43H 41H 4CH 4CH 20H 31H 30H 34H 7FH 7FH 7FH 7FH 7FH 7FH
6C10H 7FH 7FH 52H 45H 4DH 20H 45H 58H 41H 4DH 50H 4CH 45H 53H 7FH 7FH
6C20H 7FH 7FH 7FH 7FH 7FH 7FH 7FH 7FH 7FH 7FH 0DH 0DH 0DH 0DH 0DH 0DH
6C30H 0DH 0DH 0DH 45H 58H 41H 4DH 7FH 7FH 7FH 7FH 52H 45H 4DH 20H 45H
6C40H 58H 41H 4DH 50H 4CH 45H 53H 20H 4FH 4EH 20H 50H 41H 47H 45H 20H
6C50H 36H 2DH 37H 0DH 43H 41H 4CH 4CH 20H 31H 30H 34H 0DH 52H 4DH 41H
6C60H 4EH 54H 20H 7FH 7FH 7FH 54H 20H 44H 41H 54H 41H 0DH 52H 45H 4DH
6C70H 20H 54H 48H 45H 52H 45H 20H 49H 53H 20H 4EH 4FH 20H 52H 45H 41H
6C80H 4CH 20H 52H 45H 53H 50H 4FH 4EH 53H 45H 20H 57H 48H 49H 43H 48H
6C90H 20H 57H 49H 4CH 4CH 20H 53H 48H 4FH 57H 20H 55H 50H 20H 49H 4EH
6CA0H 20H 41H 4EH 20H 45H 58H 41H 4DH 50H 4CH 45H 0DH 0DH 0DH 0DH 0DH
6CB0H 52H 45H 4DH 20H 45H 58H 41H 4DH 50H 4CH 45H 53H 20H 4FH 4EH 20H
6CC0H 50H 41H 47H 45H 20H 36H 2DH 36H 0DH 50H 55H 53H 48H 20H 38H 30H
6CD0H 30H 30H 48H 3AH 50H 7FH 7FH 20H 70H 55H 53H 7FH 7FH 7FH 3AH 20H
6CE0H 50H 55H 53H 48H 20H 38H 30H 7FH 30H 34H 46H 48H 20H 3AH 43H 41H
6CF0H 4CH 4CH 20H 31H 30H 31H 0DH 0DH 0DH 43H 41H 4CH 4CH 20H 31H 30H

Input queue front pointer is: 6C5DH

Use this call to set the PRT1 port to 1200 bit/s, 8 bits, 1 stop bit, no parity,
and software handshaking.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 105

Example
>CALL 105

CALL 104: Print PRT1
Receive Buffer and Pointer

CALL 105: Reset PRT1 to
Default Settings

Chapter
Call Routines 69–127

13

13 -38

Undefined. If you execute an undefined call, you receive the error
message, “ERROR–UNSUPPORTED CALL. ”

 Use CALL 108 to enable DF1 driver communications via port PRT2.
You can only enable this device if the operating mode jumper JW4
 (page 1 -6) is in the correct position.

 See CALL 113 (page13 -47) to disable the DF1 driver.

Input and Output Arguments

This routine has six input arguments and no output arguments.

Argument Description Page

input 1 specifies the operational code selection that indicates
the mode of operation for the DF1 driver

13 -38

input 2 specifies the Poll Time-out period when in half-duplex
mode or the ACKnowledge Time-out period when in
full-duplex mode

13 -42

input 3 number of message retries when in half-duplex mode
or the number of ENQuiry Retries to perform when in
full-duplex mode

13 -43

input 4 RTS On Delay time period when in half-duplex mode or
the number of NAK Received Retries to perform when
in full-duplex mode

13 -43

input 5 RTS Off Delay time period 13 -43

input 6 BASIC module address that the DF1 driver responds to
when receiving enquires from a remote DF1 device

13 -43

Input Argument One
The first input argument specifies the operational code selection that
indicates the mode of operation for the DF1 driver.

The operational code specifies the following DF1 parameters:

 full-duplex or half-duplex slave operation

 duplicate packet detection (DPD) selection

 BCC or CRC error checking selection

 enable embedded responses (ER) or auto-detect embedded responses
(ADER) (Ex. perform embedded responses only if embedded responses
received form other station. Only applies to full-duplex operation).

 modem handshaking selection

CALL 106 – 107

CALL 108: Enable DF1
Driver Communications

Chapter
Call Routines 69–127

13

13 -39

Operational Codes for Half-Duplex Mode:

Operational
code

Corresponding mode of operation Special operational code
(same as 0 - 11 except
EOT is suppressed)

0 NHS, Disable DPD, BCC Error Checking 32

1 NHS, Enable DPD, BCC Error Checking 33

2 NHS, Disable DPD, CRC Error Checking 34

3 NHS, Enable DPD, CRC Error Checking 35

4 HDMwoCC, Disable DPD, BCC Error Checking 36

5 HDMwoCC, Enable DPD, BCC Error Checking 37

6 HDMwoCC, Disable DPD, CRC Error Checking 38

7 HDMwoCC, Enable DPD, CRC Error Checking 39

8 HDMwCC, Disable DPD, BCC Error Checking 40

9 HDMwCC, Enable DPD, BCC Error Checking 41

10 HDMwCC, Disable DPD, CRC Error Checking 42

11 HDMwCC, Enable DPD, CRC Error Checking 43

A special range of operational codes (32 - 43) are also accepted.
These codes are identical to codes 0 - 11 except that the end of
transmission (EOT) packets are suppressed. This operation is a deviation
from the standard DF1 protocol and should only be used where
transmissions from a slave module are minimized. When using one of
these selections, the DF1 driver does not respond to ENQuires from a DF1
master unless there is a data packet transmitted.

Chapter
Call Routines 69–127

13

13 -40

Modem Handshaking for Half-Duplex Mode

Modem handshaking Operational codes Description

half-duplex no
handshaking

0–3 • RTS output line is activated during transmission, but no RTS On Delay or RTS Off
Delay is performed.

• DTR output line is not manipulated by the DF1 driver. It is recommended that you
activate DTR in your BASIC program while DF1 communications are taking place

• CTS and DSR input lines are not monitored nor do they have any affect on
transmissions or receptions.

• Transmission monitor guarantees that transmitter interrupts are generated in a timely
manner. If a time-out occurs as a data packet was transmitting, the DF1_Status is set
to code value 5. Also, RTS is immediately dropped when this timeout occurs.

half-duplex without
continuous carrier

4–7 Important: For proper operation, connect the Data Carrier Detect (DCD) line from the
modem to the DSR input of port PRT2.
• RTS output line is activated only during transmissions. The actual packet

transmission starts after the delay specified by the RTS On Delay parameter,
assuming the CTS input is active by then. When the transmission is complete and the
delay time period specified by the RTS Off Delay parameter has timed out, RTS is
deactivated.

• Actual transmission does not start until the CTS input is active. A transmission
guarantees that transmitter interrupts are generated in a timely manner. If a timeout
occurs while a data packet is transmitting, then the DF1_Status is set to code value 5.
RTS is dropped immediately when this occurs.

• If not already active, the DTR line is raised when the DF1 Driver is enabled. Even
after the DF1 Driver is disabled, it will remain active; you may deactivate it via CALL
98, page 13 -34.

• Characters received only are accepted if the DCD line is active. A packet reception is
aborted if DCD goes inactive during the byte-to-byte reception of that packet. There is
no constant monitoring of DCD even between packets as there is with the constant
carrier selection. Therefore, the DTR line is never deactivated.

half-duplex with
continuous carries

8–11 Important: For proper operation, connect the Data Carrier Detect (DCD) line from the
modem to the DSR input of port PRT2.
• RTS output line is activated only during transmissions. The actual packet

transmission starts after the delay specified by the RTS On Delay parameter,
assuming the CTS input is active by then. When the transmission is complete and the
delay time period specified by the RTS Off Delay parameter has timed out, RTS is
deactivated.

• Actual transmission does not start until the CTS input is active. A transmission
guarantees that transmitter interrupts are generated in a timely manner. If a timeout
occurs, then the DF1_Status is set to code value 5 if the data packet was being
transmitted. RTS is dropped immediately when this occurs.

• If not already active, the DTR line is raised when the DF1 Driver is enabled. It is
dropped only when DCD is lost. Even after the DF1 Driver is disabled or remains
active, you may deactivate it via CALL 98, page 13 -34.

• For packet reception, the DCD signal is monitored (via the DSR input line). If DCD is
not already active when the DF1 Driver is enabled, then it is immediately detected
when it does go active.

At this point, the DCD is checked every 5 ms to make sure it remains active. If DCD
goes inactive, the driver waits 10 seconds for it to go active again. If DCD does not go
active again in this amount of time, then the DTR output line is dropped for a period of
time ranging from 5 to 10 ms in length. Also, characters that are received are
accepted if the DCD line is active. A packet reception is aborted if DCD goes inactive
during the byte-to-byte reception of a packet.

Chapter
Call Routines 69–127

13

13 -41

Operational Codes for Full-Duplex Mode:

Legal values for the operational code are 16 to 31 for full-duplex mode:

Operational code Corresponding mode of operation

16 NHS, ER, Disable DPD, BCC Error Checking

17 NHS, ER, Enable DPD, BCC Error Checking

18 NHS, ER, Disable DPD, CRC Error Checking

19 NHS, ER, Enable DPD, CRC Error Checking

20 NHS, ADER, Disable DPD, BCC Error Checking

21 NHS, ADER, Enable DPD, BCC Error Checking

22 NHS, ADER, Disable DPD, CRC Error Checking

23 NHS, ADER, Enable DPD, CRC Error Checking

24 FDM, ER, Disable DPD, BCC Error Checking

25 FDM, ER, Enable DPD, BCC Error Checking

26 FDM, ER, Disable DPD, CRC Error Checking

27 FDM, ER, Enable DPD, CRC Error Checking

28 FDM, ADER, Disable DPD, BCC Error Checking

29 FDM, ADER, Enable DPD, BCC Error Checking

30 FDM, ADER, Disable DPD, CRC Error Checking

31 FDM, ADER, Enable DPD, CRC Error Checking

Important: Select other port parameters, such as communication rate,
number of stop bits, and parity with the MODE command (page 11 -20)
before you enable DF1. The modem handshaking selection made here
overrides the handshaking parameter of the MODE command until DF1 is
disabled.

Chapter
Call Routines 69–127

13

13 -42

Modem Handshaking for Full-Duplex Mode

Modem handshaking Operational codes Description

full-duplex with no
handshaking

16–23 • RTS output line is activated when the DF1 Driver is enabled and remains so until the DF1
Driver is disabled.

• DTR output line is not manipulated by the DF1 Driver. It is recommended that you
activate DTR (CALL 97, page 13 -33) in your BASIC program while the DF1
communications is taking place.

• CTS and DSR input lines are not monitored or have any effect on transmissions.
• Transmission monitor guarantees that transmitter interrupts are generated in a timely

manner. If a timeout occurs while a data packet is transmitting, then the DF1_Status is
set to code value 5. RTS is not deactivated when this timeout occurs.

full-duplex modem
(FDM)

24–31 • RTS output line is activated when the DF1 Driver is enabled and remains so until the DF1
Driver is disabled.

• An actual transmission does not start until the CTS input is active. A transmission
monitor guarantees that transmitter interrupts are generated in a timely manner. If a
timeout occurs when a data packet is transmitting, then the DF1_Status is set to code
value 5. RTS is not deactivated when this occurs.

• If DTR is not already active when the DF1 Driver is enabled, it is immediately activated.
It becomes active only if DCD is lost as described in the next paragraph. Even after the
DF1 Driver is disabled, DTR remains active; you may deactivate it via CALL 98, page
13 -34.

• For packet receptions, the DCD signal is monitored via the DSR input line. If DCD is not
already active when the DF1 Driver is enabled, then it is immediately detected when it
does go active. At this point, DCD is checked every 5 ms to make sure it remains active.
If it goes inactive, the driver waits 10 seconds for DCD to go active again. If DCD does
not go active again in this amount of time, then the DTR output line is deactivated for a
period of time ranging from 5 to 10 ms in length.

Also, characters that are received are only accepted if the DCD line is active. A packet
reception is aborted if DCD goes inactive during the byte-to-byte reception of that packet.

Input Argument Two
The second input argument specifies the poll time-out period when in
half-duplex mode or the ACKnowledge time-out period when in
full-duplex mode. Poll time-out specifies in 5 ms increments how long to
wait before being polled by the DF1 master, before a transmission request
is ignored. PUSHing 0 indicates no poll time-out period. ACKnowledge
time-out specifies in 5 ms increments how long to wait for an ACK/NAK
before transmitting an ENQuiry. The valid range for the ACKnowledge
time-out is 2 to 65535.

Chapter
Call Routines 69–127

13

13 -43

Input Argument Three
The third input argument specifies the number of message retries when in
half-duplex mode or the number of ENQuiry retries to perform when in
full-duplex mode. Message retries specifies the number of message
transmission retry attempts made before giving up and flagging the
transmission as failed. PUSHing 0 indicates only the initial attempt is
made and if not acknowledged by the master the attempt is flagged as
failed. ENQuiry retries specifies the number of ENQ’s to transmit before a
packet transmission is flagged as failed. The valid range for both is 0 to
254.

Input Argument Four
The fourth input argument specifies the RTS On Delay time period when in
half-duplex mode or the number of NAK received retries to perform when
in full-duplex mode. RTS On Delay specifies in 5 ms increments the delay
between when a Request-To-Send (RTS) is activated and a transmission is
initiated. Only used if HDMwCC or HDMwoCC is selected through the
first input argument. The valid range for the RTS On Delay is 0 to 65535.
NAK Received Retries specifies the number of packet retries to transmit
due to receiving NAK responses. The valid range for NAK Received
Retries is 0 to 254.

Input Argument Five
The fifth input argument specifies the RTS Off Delay time period.
RTS Off Delay specifies in 5 ms increments the delay between when a
transmission is completed and a Request-To-Send (RTS) is deactivated.
The valid range for the RTS Off Delay is 0 to 65499. This argument is
only used if HDMwCC or HDMwoCC is selected through the first input
argument. This input argument is only used for half-duplex mode.
When full-duplex mode is selected a NULL value must be PUSHed.

Input Argument Six
The sixth input argument specifies the BASIC module address that the
DF1 driver responds to when receiving enquires from a remote DF1
device. Legal values are 0 to 254. This input argument is used for
half-duplex and full-duplex mode.

Chapter
Call Routines 69–127

13

13 -44

Syntax
PUSH operational code
PUSH poll timeout or ACKnowledge timeout
PUSH message retries or ENQuiry retries
PUSH RTS On delay or NAK received retries
PUSH RTS Off delay or NULL value
PUSH BASIC module DF1 address
CALL 108

Example
>1 REM EXAMPLE PROGRAM

>10 PUSH 5 : REM HDMWOCC, ENABLE DPD, BCC ERROR CHECKING

>20 PUSH 200 : REM WAIT 1 SECOND TO BE POLLED BY MASTER

>30 PUSH 2 : REM PERFORM 2 RETRIES

>40 PUSH 4 : REM 20 MS RTS ON DELAY

>50 PUSH 4 : REM 20 MS RTS OFF DELAY

>60 PUSH 10 : REM BASIC MODULE ADDRESS OF 10

>70 CALL 108

>80 END

Use CALL 109 to prints the top 9 values on the argument stack to the
console. Use this information as a troubleshooting aid. It does not affect
the contents of or pointer to the stack.

Input and Output Arguments
This routine has no input or output arguments.

Syntax
CALL 109

Example
>CALL 109

1C9H 00H 00H 00H 00H 00H 00H

1CFH 00H 00H 00H 00H 00H 00H

1D5H 00H 00H 00H 00H 00H 00H

1DBH 13H 04H 00H 00H 00H 7CH

1E1H 14H 42H 11H 96H 00H 83H

1E7H 11H 05H 92H 00H 00H 88H

1EDH 10H 00H 00H 00H 00H 84H

1F3H 20H 00H 00H 00H 00H 82H

1F9H 00H 00H 00H 00H 00H 00H

Argument stack pointer is: 01FEH

CALL 109: Print the
Argument Stack

Chapter
Call Routines 69–127

13

13 -45

Use CALL 110 to print the complete PRT2 transmit buffer with addresses,
front pointer and the number of characters in the transmit buffer to the
console. Use this information as a troubleshooting aid–contents of the
buffer are unaffected.

Input and Output Arguments

This routine has no input or output arguments.

Syntax

CALL 110

Example

>CALL 110

PRT2 Output Queue

6F00H 3 AH 3 1H 3 0H 3 8H 3 0H 3 4H 3 0H 3 0H 3 0H 3 9H 3 7H 3 4H 3 9H 3 0H 4 4H 3 0H

6F10H 4 1H 3 0H 3 0H 3 3H 4 3H 4 1H 3 0H 3 4H 4 1H 4 5H 4 1H 3 4H 4 6H 4 1H 3 6H 3 3H

6F20H 3 3H 3 0H 3 3H 3 0H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H

6F30H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 4H 3 8H

6F40H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H

6F50H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 4H 4 8H 2 0H 3 3H 3 8H 4 8H 0 DH 0 AH 2 0H

6F60H 3 6H 4 4H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 4H 3 8H

6F70H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 4H 4 8H 2 0H 3 3H 3 8H 4 8H 0 DH 0 AH 2 0H

6F80H 3 6H 4 4H 3 7H 3 0H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 2H

6F90H 4 8H 2 0H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H

6FA0H 4 8H 2 0H 3 3H 3 4H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H

6FB0H 4 8H 2 0H 3 3H 3 8H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 4H

6FC0H 4 8H 2 0H 3 3H 3 8H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 2H

6FD0H 4 8H 2 0H 3 3H 3 0H 4 8H 2 0H 3 4H 3 8H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H

6FE0H 4 8H 2 0H 3 3H 3 4H 4 8H 0 DH 0 AH 2 0H 3 6H 4 4H 4 3H 3 0H 4 8H 2 0H 3 4H 3 8H

6FF0H 4 8H 2 0H 3 2H 3 0H 4 8H 2 0H 3 3H 3 3H 4 8H 2 0H 3 3H 3 8H 4 8H 2 0H 3 4H 3 4H

Output queue front pointer is: 6F29H

CALL 110: Print the PRT2
Port Transmit Buffer and
Pointer

Chapter
Call Routines 69–127

13

13 -46

Use CALL 111 to print the complete PRT2 receive buffer with addresses,
front pointer and the number of characters in the buffer to the console.
Use this information as a troubleshooting aid–contents of the buffer are
unaffected.

Input and Output Arguments

This routine has no input or output arguments.

Syntax

CALL 111

Example

>CALL 111

 PRT2 Input Queue

6E00H 33H 0DH 43H 41H 4CH 4CH 20H 31H 30H 34H 7FH 7FH 7FH 7FH 7FH 7FH
6E10H 7FH 7FH 52H 45H 4DH 20H 45H 58H 41H 4DH 50H 4CH 45H 53H 7FH 7FH
6E20H 7FH 7FH 7FH 7FH 7FH 7FH 7FH 7FH 7FH 7FH 0DH 0DH 0DH 0DH 0DH 0DH
6E30H 0DH 0DH 0DH 45H 58H 41H 4DH 7FH 7FH 7FH 7FH 52H 45H 4DH 20H 45H
6E40H 58H 41H 4DH 50H 4CH 45H 53H 20H 4FH 4EH 20H 50H 41H 47H 45H 20H
6E50H 36H 2DH 37H 0DH 43H 41H 4CH 4CH 20H 31H 30H 34H 0DH 52H 4DH 41H
6E60H 4EH 54H 20H 7FH 7FH 7FH 54H 20H 44H 41H 54H 41H 0DH 52H 45H 4DH
6E70H 20H 54H 48H 45H 52H 45H 20H 49H 53H 20H 4EH 4FH 20H 52H 45H 41H
6E80H 4CH 20H 52H 45H 53H 50H 4FH 4EH 53H 45H 20H 57H 48H 49H 43H 48H
6E90H 20H 57H 49H 4CH 4CH 20H 53H 48H 4FH 57H 20H 55H 50H 20H 49H 4EH
6EA0H 20H 41H 4EH 20H 45H 58H 41H 4DH 50H 4CH 45H 0DH 0DH 0DH 0DH 0DH
6EB0H 52H 45H 4DH 20H 45H 58H 41H 4DH 50H 4CH 45H 53H 20H 4FH 4EH 20H
6EC0H 50H 41H 47H 45H 20H 36H 2DH 36H 0DH 50H 55H 53H 48H 20H 38H 30H
6ED0H 30H 30H 48H 3AH 50H 7FH 7FH 20H 70H 55H 53H 7FH 7FH 7FH 3AH 20H
6EE0H 50H 55H 53H 48H 20H 38H 30H 7FH 30H 34H 46H 48H 20H 3AH 43H 41H
6EF0H 4CH 4CH 20H 31H 30H 31H 0DH 0DH 0DH 43H 41H 4CH 4CH 20H 31H 30H

Input queue front pointer is: 6E29H

CALL 111: Print the PRT2
Port Receive Buffer and
Pointer

Chapter
Call Routines 69–127

13

13 -47

Use CALL 112 to activate or de-activate the user LEDs (LED1 and
LED2).

When you change to Command mode your user-defined LEDs remain in
their last state until you re-enter Run mode.

Input and Output Arguments

This routine has two input arguments and no output arguments.
The first input argument activates or de-activates LED1. The second input
argument activates or de-activates LED2:

 1 = activate LED
 0 = deactivate LED

Any other value has no effect on that particular LED.

Syntax
PUSH LED1 state
PUSH LED2 state
CALL 112

Example
>100 PUSH 1 : REM TURN ON LED1

>110 PUSH 0 : REM TURN OFF LED2

>120 CALL 112 : REM SET THE LEDS

Use CALL 113 to disable DF1 driver communications. This call
terminates DF1 communication immediately, even if the serial
transmission of a data packet is in progress. You should write your user
program so that it completes any transmission before performing CALL
113. This call clears the PRT2 transmit and receive buffers.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 113

Example
>1 REM EXAMPLE PROGRAM

>10 CALL 113

>20 END

CALL 112: User LED
Control

CALL 113: Disable DF1
Driver Communications

Chapter
Call Routines 69–127

13

13 -48

Use CALL 114 to transmit the DF1 data packet. When you perform
CALL 114, the DF1 data is posted for the DF1 driver to transmit as a
single message packet. If you selected half-duplex slave operation, the
message packet is transmitted the next time an ENQuiry is received from
the DF1 master. If you selected full-duplex operation, the message packet
is transmitted immediately.

Use one or more PRINT# (page11 -29), PH0.#, or PH1.# (page 11 -27)
statements to construct the desired data in the transmit buffer of port PRT2.
After constructing the data in the transmit buffer, use CALL 114 to initiate
transmission of the data inside a DF1 message packet.

Use caution when building DF1 data packets. If you attempt to transmit
five or less bytes of data (minimum is six bytes), the message ERROR:

DF1 DATA PACKET TO TRANSMIT IS TOO SMALL is sent to the program
port and the BASIC module enters Command mode.

If you attempt to place more than 256 bytes of data into the transmit buffer,
the message ERROR: BUFFER OVERFLOW is sent to the program port and
the BASIC module enters Command mode.

Your program must wait for one transmission to complete before
performing construction of another data packet. Use CALL 115 to check
the DF1 transmission status to determine when a transmission is complete.

Input and Output Arguments

This routine has no input or output arguments.

Syntax
CALL 114

Example
>1 REM EXAMPLE PROGRAM

>10 CALL 114

>20 END

CALL 114: Transmit DF1
Packet

Chapter
Call Routines 69–127

13

13 -49

Use CALL 115 to check the DF1 transmit status.

Input and Output Arguments

This routine has no input arguments and one output argument. The output
argument returns a value that represents the DF1 transmit status:

 0 = no transmit result pending

 1 = transmit result pending

 2 = transmission successful

 3 = transmission failed

 4 = enquiry timeout, no transmission– this status should never be
returned if full-duplex mode is selected

 5 = if modem handshaking is selected, either a loss of CTS signal while
transmitting or a fatal transmitter failure has occurred. If no
handshaking is selected, a fatal transmitter failure has occurred

 6 = if modem handshaking with constant carrier has been selected for
either half-duplex or full-duplex modes, this error indicates transmission
failure due to modem disconnection (DCD signal loss for more than 10
seconds)

 7 = DF1 driver is not enabled

Syntax
CALL 115

POP DF1 transmit status

Example
>1 REM EXAMPLE PROGRAM

>10 CALL 115

>20 POP X

>30 END

CALL 115: Check DF1
Status

Chapter
Call Routines 69–127

13

13 -50

Use this call to execute a user generated assembly language routine.
This call performs some preliminary checks. If all the checks pass, then
the user generated code is executed.

Input and Output Arguments

The number of input and output arguments are user defined. There must
be at least one input argument. The last input argument must be the
absolute address of the first byte of the header which precedes the routine.
The user generated assembly language code must be preceded by a four
byte header and followed by a two byte footer:

first header byte must be a AAH

second header byte must be a 55H

third header byte absolute address of the first byte of footer

fourth header byte absolute address of the first byte of footer

first footer byte must be a 55H

second footer byte must be a AAH

If any of the checks fail, then the stack is cleared, an error message is
printed to the program port and the BASIC code execution stops.

Important: Programming the BASIC module with assembly language is
extremely difficult and complex. Allen-Bradley does not support assembly
language programming with the BASIC module. We recommend you
instead use the C tool kit and C compiler available from one of our
Pyramid Solutions Program Partners.

Syntax
PUSH address
CALL 116

Example
>100 PUSH 8000H : CALL 116

>110 POP a,B,C

CALL 116: Call User
Defined Assembly Language
Routine

Chapter
Call Routines 69–127

13

13 -51

Use CALL 117 to get the length of the DF1 data packet.

When CALL 117 is read in a program, the BASIC module checks to see if
DF1 communications have been enabled through CALL 108 (page13 -38).
If DF1 communications have not been enabled, an error message is printed
to the console device and the BASIC module enters Command mode.

After you receive the length of the DF1 packet has been retrieved, you
must use it in conjunction with the GET statement (page11 -12). The GET
statement retrieves the data in the received DF1 packet.

Important: If the receive buffer is found empty, then 0000 is returned to
the argument stack.

Input and Output Arguments

This routine has no input arguments and one output argument. The output
argument returns the length of the oldest DF1 packet queued up in the DF1
receive buffer.

Syntax
CALL 117

POP length of DF1 packet

Example
>1 REM EXAMPLE PROGRAM

>10 CALL 117

>20 POP X

>30 END

CALL 117: Get DF1 Packet
Length

Chapter
Call Routines 69–127

13

13 -52

Important: This call requires the BASIC module jumper JW5 to be in 16
point mode (page 1 -7).

Use CALL 118 to allow the BASIC module to receive data packets sent by
PLC-2, PLC-3, or PLC-5 message instructions on the DF1 network.
This call also sets up the BASIC module to receive data packets from an
SLC node on the DH-485 network. Both the DF1 port (PRT2) and the
DH485 port cannot be active at the same time. Use jumper JW4 (page
1 -6) on the BASIC module to select your port configuration.

Any write message instruction sent to the BASIC module from these
PLC/SLC processors causes the data to be placed in the BTR buffer and/or
the BASIC module string, starting at the designated word offset.

The low byte of word 1 of the BTR buffer contains the character count
(byte count) of the transferred data. The high byte of this word is reserved.
If you choose an internal string, the first character contains the byte count.
The second character (transaction number) of the internal string is
incremented, upon successful receipt of a packet, to inform the BASIC
module that new data is in the string. The value of this transaction number
wraps around from 255 to 0.

Execute CALL 118 once. After the call is executed, the BASIC module
checks the port at the end of each line of BASIC code.

1. The BASIC module receives packets initiated from the PLC/SLC
processor configured in the call through either ports PRT2 or DH485.
PRT2 and DH485 ports cannot be active at the same time.

BASIC Module

PORT DH485

PORT PRT2

DH-485 Network

SLC Processor

DF1 Network

PLC Processor

CALL 118: PLC/SLC
Unsolicited Writes

Chapter
Call Routines 69–127

13

13 -53

2. The BASIC module transfers the data into the local PLC BTR buffer
and places the byte count into the lower byte of the BTR word 1.
The upper byte of BTR word 1 is reserved.

BASIC Module

BTR BUFFER

BTR Buffer

BYTE
COUNT

Reserved

3. The BASIC module sets the input image table bit 17 to inform the
PLC processor that valid data is available. The BASIC module then
initiates a block transfer read.

PLC Processor BASIC Module

PLC Backplane

Set Input
Image Table
Bit 17

4. The PLC processor retrieves the data from the block transfer. The
BASIC module detects a successful block transfer and resets the
input image table bit 17 on the same end of scan cycle in which the
block transfer was performed.

PLC Processor BASIC Module

PLC Backplane

Reset Input
Image Table
Bit 17

This call is active until you re-execute it with different input parameters.
If this occurs, the previous CALL 118 is automatically disabled and the
new CALL 118 takes effect. You cannot execute multiple CALL 118s in
parallel.

Chapter
Call Routines 69–127

13

13 -54

Input and Output Arguments

This routine has five input arguments and one output argument.

Argument Description Page

input 1 enables or disables the call 13 -54

input 2 BTR buffer, with or without the internal string, or the
internal string alone

13 -54

input 3 always 1 13 -54

input 4 the string number 13 -55

input 5 maximum word length allowed for the data packet 13 -55

output 1 call status 13 -55

Input Argument One
The first input argument enables or disables the call:

 0 = disable the previously executed CALL 118

 1 = enable CALL 118. These commands are acceptable:
PLC (Unprotected writes)
PLC (Word range writes)
PLC (Typed writes)
SLC 5/02 (Unprotected writes)
SLC 5/02 (Typed writes)

If the data received exceeds the string length or CPU file size, the
remaining data is truncated.

Input Argument Two
The second input argument is the selection of the BTR buffer with or
without the internal string, or the internal string alone:

 0 = BTR buffer
 2 = internal string
 4 = BTR buffer and internal string

If you choose the internal string (2), the input/output table data
handshaking bit (17) is not used to indicate that data was received by the
BASIC module. In the BASIC program, you must monitor the second
character of the string (transaction number) which is incremented upon
every successful data transfer. Then you must remove the data from the
string before the next data packet is received or data is lost.

Input Argument Three
The third input argument is always 1.

Chapter
Call Routines 69–127

13

13 -55

Input Argument Four
The fourth input argument is the string number. If the second input
argument does not select internal string usage, the value of this input
argument is ignored but you must still PUSH it.

Input Argument Five
The fifth input argument is the maximum word length allowed for the data
packet. Any packets received by the BASIC module of greater size are
rejected. Entering 0 causes the BASIC module to accept packets of any
size and all packets are received up to the maximum length of the
destination file. Excess data is truncated.

Output Argument One
The output argument is the status of the call:

 0 = successful
 1 = disabled
 2 = bad input parameter
 3 = selected DH485/DF1 port not enabled
 4 = string too small
 5 = string is not dimensioned
 6 = JW5 not in 16-point position

Syntax

PUSH CALL enable/disable
PUSH selection of BTR file and/or string
PUSH 1

PUSH string number
PUSH maximum word length
CALL 118

POP CALL 118 status

Chapter
Call Routines 69–127

13

13 -56

Example

>1 REM EXAMPLE PROGRAM

>10 REM ENABLE PLC/SLC UNSOLICITED WRITE INTERRUPT

>15 PUSH 64: CALL 4: REM SET BLOCK TRANSFER WRITE LENGTH

>16 PUSH 64: CALL 5: REM SET BLOCK TRANSFER READ LENGTH

>20 PUSH 1 : REM ENABLE THE CALL

>30 PUSH 0 : REM BTR BUFFER

>40 PUSH 1 : REM ALWAYS 1

>50 PUSH 0 : REM STRING NUMBER – NOT USED

>60 PUSH 20 : REM MAX ALLOWED WORD LENGTH OF DATA PACKET

>70 CALL 118

>80 POP S

>90 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 118 SETUP”

Sample Ladder Logic

BTR

BLOCK TRANSFER READ

Rack

Group

Module

00

1

0

N7:0

N10:10

64

Control Block

Data file

Length

Rung 2:0

17

I:001

Rung 2:1

[END OF FILE]

(EN)

(DN)

(ER)

NContinuous

N7:0

15

Use CALL 119 to reset the PRT2 port to these default settings:

 8 bits/character
 1 stop bit
 no parity
 DCD off
 XON-XOFF off

Input and Output Arguments

This routine has no input and no output arguments.

Syntax
CALL 119

Example
>1 REM EXAMPLE PROGRAM

>10 CALL 119

>20 END

CALL 119: Reset the PRT2
Port to Default Settings

Chapter
Call Routines 69–127

13

13 -57

Use this call to clear the BASIC module input and output buffers.

Input and Output Arguments

This routine has one input argument and no output arguments. The input
argument is an 8-bit word that corresponds to the BASIC module input and
output buffers shown here:

Bit Decimal equivalent BASIC module input and output buffer area

0 not used

1 not used

2 4 PLC BTW buffer

3 8 PLC BTR buffer

4 16 reserved

5 32 reserved

6 not used

7 not used

You must PUSH the decimal equivalent of the areas of the input and output
buffers that you want to clear. For example to clear the BTW and BTR
buffers you would push the value “12”. The BASIC module sets bits 2 and
3 true and clears the BTW and BTR buffers.

Important: CALL 120 does not clear the block-transfer buffers for
background operations (CALLs 33, 34, 49, 50, 118, 122, and 123).
The standard block-transfer buffers are cleared using the bits defined
above.

Syntax
PUSH clear BTW and BTR buffers
CALL 120

Example
>1 REM EXAMPLE PROGRAM

>10 PUSH 12 :REM CLEAR BTW AND BTR BUFFERS

>20 CALL 120

>30 END

Undefined. If you execute an undefined call, you receive the error
message, “ERROR–UNSUPPORTED CALL .”

CALL 120: Clear BASIC
Module I/O Buffers

CALL 121

Chapter
Call Routines 69–127

13

13 -58

Important: This call requires the BASIC module jumper JW5 to be in 16
point mode (page 1 -7).

Use CALL 122 to read up to 63 words of data from a remote DF1 node
(PLC-2, -3, or -5) to the BTW buffer, and/or a string within the BASIC
module.

This table lists specific notes when using CALL 122 with the PLC-3 and
PLC-5 processor.

PLC processor Notes

3 for timers and counters, the file number pushed (third
parameter) is the structure number, limited to a maximum of
255 words

5 for timer data, an element is three 16-bit words, stored in the
destination file in the following order: Control, Preset, and
Accumulator

If you choose an internal string, the first character (transaction number)
increments upon a successful read transaction to inform the BASIC module
that new data is in the string. The value of the transaction number wraps
around from 255 to 0.

Set up the DF1 port parameters with CALL 108 (page13 -38). The DF1
port can operate with full-duplex or half-duplex slave protocol. Also make
jumper JW4 is configured for DF1 protocol (page 1 -6).

Execute CALL 122 once to set up the data transfer parameters.
PLC input table bit 12 and output table bit 12 is used to initiate and notify
completion of transfer.

1. The local PLC processor sets the output image table bit 12 to inform
the BASIC module to execute the READ command configured in this
call.

PLC Processor

Set Output Image
Table Bit 12

BASIC Module

PLC Backplane
PRT2

PRT1

CALL 122: Read Remote
DF1 PLC Data File

Chapter
Call Routines 69–127

13

13 -59

2. The BASIC module issues the appropriate READ command to the
remote PLC. The data and status are received from the PLC
processor.

Remote PLC Processor

DATA FILE

BASIC Module

READ command
PRT2

Data and Status

DF1 Network

3. When data is available, the BASIC module transfers the data into the
BTR buffer and the BASIC module places the transaction status in
the lower byte of BTR buffer word 1. The upper byte of BTR word 1
is reserved.

BASIC Module

Data 2–64

BTR Buffer

Status 1Reserved

4. The BASIC module sets the input image table, bit 12 and performs a
block transfer read.

PLC Processor BASIC Module

PLC Backplane
Sets Input
Image Table
Bit 12

Chapter
Call Routines 69–127

13

13 -60

5. The PLC receives the data and status from the block transfer and
unlatches output image table bit 12 to inform the BASIC module that
data was received.

PLC Processor BASIC Module

PLC Backplane
Unlatch Output
Image Table Bit 12

6. The BASIC module resets the input image table bit 12 on the same
end of scan cycle in which the block transfer was complete.

PLC Processor BASIC Module

PLC Backplane
Reset Input Image
Table Bit 12

This call is active until you re-execute it with different input parameters.

Input and Output Arguments

This routine has ten input arguments and one output argument.

Argument Description Page

input 1 type of PLC READ command issued 13 -61

input 2 node address of the remote PLC device (0–255) 13 -61

input 3 file number to be read on PLC remote device (0–255) 13 -61

input 4 file type to be read from the PLC remote device 13 -61

input 5 starting word offset within the file 13 -61

input 6 number of elements to be transferred 13 -62

input 7 message time-out value 13 -62

input 8 BTR buffer and/or internal string 13 -62

input 9 always 1 13 -62

input 10 string number 13 -62

output 1 call status 13 -63

To disable this call, PUSH a zero into the first input parameter. All other
parameters are ignored but you must still PUSH them.

Chapter
Call Routines 69–127

13

13 -61

Input Argument One
The first input argument is the type of PLC READ command you issued:

 0 = disable the previously executed CALL 122
 2 = common interface file – PLC-2 unprotected READ command
 3 = PLC-3 file – word range READ command
 5 = PLC-5 file – typed READ command

Input Argument Two
The second input argument is the node address of the remote PLC device
(0 through 255). If the number is not within this range, the status equals 2
and the read message does not occur.

Input Argument Three
The third input argument is the file number to be read on the PLC remote
device (0 through 255). If the number is not within this range, the status
equals 2 and the read message does not occur. The parameter is ignored if
the common interface file is chosen in the first parameter, but you must
still PUSH it.

Input Argument Four
The fourth input argument is the file type to be read from the PLC remote
device. Enter the file type code as shown below. This argument is ignored
if you chose the common interface file in the first parameter but you must
still PUSH it (assumes integer type). If the file type is not one of these, the
status equals 2 and the read message does not take place.

File type File type code Words/Element
(1 word = 16 bits)

integer file ASC(N) 1 word/element

status file ASC(S) 1 word/element

counter file ASC(C) 3 words/element

timer file ASC(T) 3 words/element

bit file ASC(B) 1 word/element

control file ASC(R) 3 words/element

input file ASC(I) 1 word/element

output file ASC(O) 1 word/element

Input Argument Five
The fifth input argument is the starting word offset within the file on the
PLC-2 remote device (0 through 32766). For PLC-3 integer, binary, or
status files, the value is 0–9999. For PLC-3 I/O files, the value is 0–4095.
For PLC-3 timer or counter files the value must be 0. If the number is not
within this range, the status equals 2 and the transfer does not occur.

Chapter
Call Routines 69–127

13

13 -62

Input Argument Six
The sixth input argument is the number of elements to be transferred.
If the number is not within the range listed in the table, the status equals 2
and the transfer does not occur.

File type code Valid element length range

ASC(N) 1 to 63

ASC(S) 1 to 63

ASC(C) 1 to 21

ASC(T) 1 to 21

ASC(B) 1 to 63

ASC(R) 1 to 21

ASC(I) 1 to 21

ASC(O) 1 to 21

common interface file 1 to 21

Input Argument Seven
The seventh input argument is the message time-out value. This value (1
through 255) corresponds to the number of hundreds of milliseconds that
are allowed to receive the read response (0.1 through 25.5 seconds). If the
read response is not received within this time, the message aborts with the
status equal to 55 in the input file word 1. If the time-out value is not
within the range (1 through 255), the status output argument equals 2 and
the transfer does not take place.

Input Argument Eight
The eighth input argument is the selection of the BTR buffer with or
without the internal string or the internal string alone:

 0 = BTR buffer
 2 = internal string
 4 = BTR buffer and internal string

If you chose internal string (2), execute CALL 29 (page12 -18) to initiate
each data transfer without requiring PLC processor interaction. The output
table bit 10 also initiates string transactions.

Input Argument Nine
The ninth input argument is always 1.

Input Argument Ten
The tenth input argument is the string number. If the eighth input
argument does not select internal string usage, the value of this input
argument is ignored, but you must still PUSH it.

Chapter
Call Routines 69–127

13

13 -63

Output Argument One
The output argument is the status of the call. It has these values:
 0 = successful
 1 = disabled
 2 = bad input parameter
 3 = DF1 not enabled
 4 = string too small
 5 = string is not dimensioned
 6 = JW5 not in 16-point position

Whenever you attempt to read a remote node, the status of the read is
placed into BTR word 1. The possible status codes are:

Code Indicates

0 transfer OK

1 transmission failed

2 enquiry time out

3

• with handshaking selected – either a loss of CTS signal
while transmitting or a fatal transmitter failure occurred

• without handshaking selected – a fatal transmitter failure
occurred

4 transmission failure due to modem disconnection (DCD signal
loss for more than 10 seconds) if modem handshaking with
constant carrier is selected

5 DF1 driver is not enabled

6 message timed out

81 illegal command or format

82 host has a problem and will not communicate

83 remote station host is not there, disconnected, or shut down

84 host could not complete function due to hardware fault

85 addressing problem or memory protect rungs

86 function disallowed due to command protection selection

87 processor is in Program mode

88 compatibility mode file missing or communication zone problem

89 remote station cannot buffer command

8B remote station problem due to download

8C local station cannot execute command due to active IPBs

C1 illegal address format – field has an illegal value

C2 illegal address format – not enough fields specified

C3 illegal address format – too many fields specified

C4 illegal address format – symbol not found

C5 illegal address format – symbol is 0 or greater than the
maximum number of characters supported by this device

C6 illegal address – address does not exist or does not point to
something usable in this command

C7 illegal size – file is wrong size; address is past end of file

C8 cannot complete request

C9 data or file is too large

Chapter
Call Routines 69–127

13

13 -64

IndicatesCode

CA request is too large; transaction size plus word address is too
large

CB access denied, privilege violation

CC resource is not available; condition cannot be generated

CD resource is already available; condition already exists

CE command cannot be executed

CF overflow; histogram overflow

D0 no access

D1 illegal data type information

D2 invalid parameter; invalid data in search or command block

D3 address reference exists to deleted area

D4 command execution failure for unknown reason; PLC–3
histogram overflow

D5 data conversion error

D6 the scanner is not able to communicate with a 1771 chassis
adapter

D7 the adapter is not able to communicate with the module

D8 the 1771 module response was not valid

D9 duplicated label

DA file is open – another station owns it

DB another station is the program owner

Syntax
PUSH type of DF1 PLC READ command
PUSH remote PLC node address
PUSH file number of remote PLC
PUSH file type on remote PLC
PUSH starting element offset on remote PLC
PUSH number of elements to be transferred
PUSH message time-out value
PUSH BTR buffer and/or internal string
PUSH 1

PUSH string number
CALL 122

POP CALL 122 status

Chapter
Call Routines 69–127

13

13 -65

Example
>15 PUSH 64: CALL 4:REM SET BLOCK TRANSFER WRITE LENGTH

>16 PUSH 64: CALL 5: REM SET BLOCK TRANSFER READ LENGTH

>20 PUSH 5 : REM PLC-5 FILE

>30 PUSH 0 : REM NODE ADDRESS OF PLC-5

>40 PUSH 7 : REM FILE NUMBER OF PLC-5

>50 PUSH ASC(N) : REM FILE TYPE OF PLC-5

>60 PUSH 0 : REM STARTING WORD OFFSET OF PLC-5 FILE

>70 PUSH 20 : REM NUMBER OF DATA WORDS TO READ

>80 PUSH 10 : REM COMMAND TIME-OUT VALUE (X100MS)

>90 PUSH 1 : REM DESTINATION IS BTR BUFFER

>100 PUSH 0 : REM ALWAYS 1

>110 PUSH 0 : REM STRING NUMBER – NOT USED THIS EXAMPLE

>120 CALL 122

>130 POP S : REM STATUS OF THE CALL

>140 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 122 SETUP”

Sample Ladder Logic

(L)
O:001

12

BTR

BLOCK TRANSFER READ

Rack

Group

Module

00

1

0

N7:0

N10:10

64

Control Block

Data file

Length

Rung 2:0

12

I:001

Rung 2:2

[END OF FILE]

(EN)

(DN)

(ER)

NContinuous

N10:0

0 Rung enable bit
(N10:0 used as example)

(U)
N10:0

Rung 2:1

(U)

O:001

12

0

O:001

12

Chapter
Call Routines 69–127

13

13 -66

Important: This call requires the BASIC module jumper JW5 to be in 16
point mode (page 1 -7).

Use CALL 123 to write up to 63 words of data from BTW buffer and/or a
string within the BASIC module to remote DF1 node (PLC-2 , -3 , or -5
processor). The table lists specific notes when using CALL 123 with the
PLC-3 and PLC-5 processors.

PLC processor Notes

for timers and counters, the file number PUSHed (third
parameter) is the structure number, limited to a maximum of
255 words

3
input and output files cannot be accessed with this CALL.
Choosing these file types will cause a 2 (bad input parameter)
to be popped

5 for timer data, an element is three 16-bit words, stored in the
source file in the following order: Control, Preset, and
Accumulator

If you choose an internal string, the first character (transaction number)
increments upon a successful write transaction to inform the BASIC
module that string data was written to the PLC processor. The value of the
transaction number wraps around from 255 to 0. If you perform a
block-transfer the first word is reserved.

Set up the DF1 port parameters are set up with CALL 108 (page 13 -38).
DF1 port can operate with either full-duplex or half-duplex slave protocol.

Execute CALL 123 once to set up the data transfer parameters. Input
image table bit 13 and output image table bit 13 are used to initiate and
notify completion of the transfer. Input image table bit 4 is used to notify
the PLC that the DF1 status is available.

1. The local PLC processor ladder logic builds a file with DF1 data.

PLC Processor

Build DF1 Data File

CALL 123: Write to Remote
DF1 PLC Data File

Chapter
Call Routines 69–127

13

13 -67

2. The PLC processor latches output image table bit 13 to inform the
BASIC module that valid data is available.

PLC Processor

Latches Output
Image Table
Bit 13

BASIC Module

PLC Backplane
PRT2

PRT1

3. The BASIC module sets bit 13 in the input image table to inform the
PLC processor that that block transfer will be performed.

PLC Processor

Set Input Image
Table Bit 13

BASIC Module

PLC Backplane
PRT2

PRT1

4. The BASIC module performs a block transfer to receive the data.

BASIC Module

PRT2

PLC Processor

PLC Backplane

BTW Buffer

Reserved

DATA 2–64

Reserved

5. The PLC processor unlatches bit 13 in the output image table.

PLC Processor

Unlatches Output
Image Table
Bit 13

BASIC Module

PLC Backplane
PRT2

PRT1

Chapter
Call Routines 69–127

13

13 -68

6. The BASIC module clears bit 13 in the input image table.

PLC Processor

Clear Input Image
Table Bit 13

BASIC Module

PLC Backplane
PRT2

PRT1

7. The BASIC module assembles the DF1 packet and sends it to the
remote device.

Remote Device

DF1 Packet

BASIC Module

PRT2

DF1 Network

8. The BASIC module places the DF1 status of the transaction in BTR
word 1.

PLC Processor BASIC Module

PLC Backplane

BTR Buffer

DF1
Status

Reserved

9. The BASIC module sets the input image table bit 4 to inform the PLC
processor that the data was transmitted, and that the status of the
transfer is valid. The PLC processor performs a block transfer to
retrieve the status.

PLC Processor BASIC Module

PLC Backplane
Set Input Image
Table Bit 4

Chapter
Call Routines 69–127

13

13 -69

10. The BASIC module detects a successful block transfer and resets the
input image table bit 4.

PLC Processor BASIC Module

PLC Backplane

Reset Input
Image Table
Bit 4

This call is active until you re-execute it with different input parameters.

Input and Output Arguments

This call has ten input arguments and one output argument.

Argument Description Page

input 1 type of PLC WRITE command issued 13 -69

input 2 decimal node address of the remote PLC device
(0–255)

13 -69

input 3 file number to be written to on PLC remote device
(0–255)

13 -70

input 4 destination file time on the remote device 13 -70

input 5 starting word offset within the file 13 -70

input 6 number of elements to be transferred 13 -70

input 7 message time-out value 13 -71

input 8 selection of the BTW buffer or internal string 13 -71

input 9 always 1 13 -71

input 10 string number 13 -71

output 1 call status 13 -71

To disable this call, PUSH a zero pushed into the first input parameter.
All other parameters are ignored but you must still push them.

Input Argument One
The first input argument is the type of PLC WRITE command you issued:

 0 = disable the previously executed CALL 123
 2 = common interface file – PLC-2 unprotected WRITE command
 3 = PLC-3 file – word range WRITE command
 5 = PLC-5 file – typed WRITE command

Input Argument Two
The second input argument is the decimal node address of the PLC remote
device (0 through 255). If the number is not within this range, the status
equals 2 and the write message does not occur.

Chapter
Call Routines 69–127

13

13 -70

Input Argument Three
The third input argument is the file number to be written to on the PLC
remote device (0 through 255). If the number is not within this range, the
status equals 2 and the write message does not occur. If you choose the
common interface file in the first parameter this input is ignored, but you
must still PUSH it.

Input Argument Four
The fourth input argument is the destination file type on the remote device.
This number is ignored if you choose the common interface file in the first
parameter (assumes integer file). If file type code is not one shown in the
table the status equals 2 and write message does not take place.

File type File type code Words/Element
(1 word = 16 bits)

integer file ASC(N) 1 word/element

status file ASC(S) 1 word/element

counter file ASC(C) 3 words/element

timer file ASC(T) 3 words/element

bit file ASC(B) 1 word/element

control file ASC(R) 3 words/element

input file ASC(I) 1 word/element

output file ASC(O) 1 word/element

Input Argument Five
The fifth input argument is the starting word offset within the file on the
PLC-2 remote device (0 through 32766). For PLC-3 integer, binary, or
status files, the value is 0–9999 (decimal). For PLC-3 I/O files, the value
is 0–4095 (decimal). For PLC-3 timer or counter files the value is 0.
If the number is not within this range, the status equals 2 and the transfer
does not occur.

Input Argument Six
The sixth input argument is the number of elements to be transferred.
If the number is not within the range shown below, the status equals 2 and
the transfer does not occur.

File type code Valid element length range

ASC(N) 1 to 63

ASC(S) 1 to 63

ASC(C) 1 to 21

ASC(T) 1 to 21

ASC(B) 1 to 63

ASC(R) 1 to 21

ASC(I) 1 to 63

ASC(O) 1 to 63

common interface file 1 to 63

Chapter
Call Routines 69–127

13

13 -71

Input Argument Seven
The seventh input argument is the message time-out value. This value (1
through 255) corresponds to the number of hundreds of milliseconds that
are allowed to receive the write response (0.1 through 25.5 seconds). If the
write response is not received within this time, the message aborts with the
status equal to 55 in the input file word 1. If the time-out value is not
within the range (1 through 255), the status equals 2 and the transfer does
not take place.

Input Argument Eight
The eighth input argument is the selection of the source BTW buffer or the
internal string:

 0 = BTW buffer
 2 = internal string

If you chose internal string (2), you can execute CALL 29 (page12 -18) to
initiate each data transfer without requiring PLC processor interaction.
The output table bit 13 also initiates a string transaction.

Input Argument Nine
The ninth input argument is always 1.

Input Argument Ten
The tenth input argument is the string number. If the eighth input
argument does not select internal string usage, the value of this input
argument is ignored, but you must still PUSH it.

Output Argument One
The output argument is the validation of the call:

 0 = successful
 1 = disabled
 2 = bad input parameter
 3 = DF1 not enabled
 4 = string too small
 5 = string is not dimensioned
 6 = JW5 not in 16-point position

Whenever you attempt to write to a remote packet, the BASIC module
places the status of the write into the input word 1. The possible status
codes are shown in the table. This status is valid when the BASIC module
sets the input table, bit 4.

Chapter
Call Routines 69–127

13

13 -72

Code Indicates

0 transfer OK

1 transmission failed

2 enquiry time out

3

• with handshaking selected – either a loss of CTS signal
while transmitting or a fatal transmitter failure occurred

• without handshaking selected – a fatal transmitter failure
occurred

4 transmission failure due to modem disconnection (DCD signal
loss for more than 10 seconds) if modem handshaking with
constant carrier is selected

5 DF1 driver is not enabled

6 message timed out

81 illegal command or format

82 host has a problem and will not communicate

83 remote station host is not there, disconnected, or shut down

84 host could not complete function due to hardware fault

85 addressing problem or memory protect rungs

86 function disallowed due to command protection selection

87 processor is in Program mode

88 compatibility mode file missing or communication zone problem

89 remote station cannot buffer command

8B remote station problem due to download

8C local station cannot execute command due to active IPBs

C1 illegal address format – field has an illegal value

C2 illegal address format – not enough fields specified

C3 illegal address format – too many fields specified

C4 illegal address format – symbol not found

C5 illegal address format – symbol is 0 or greater than the
maximum number of characters supported by this device

C6 illegal address – address does not exist or does not point to
something usable in this command

C7 illegal size – file is wrong size; address is past end of file

C8 cannot complete request

C9 data or file is too large

CA request is too large; transaction size plus word address is too
large

CB access denied, privilege violation

CC resource is not available; condition cannot be generated

CD resource is already available; condition already exists

CE command cannot be executed

CF overflow; histogram overflow

D0 no access

D1 illegal data type information

D2 invalid parameter; invalid data in search or command block

D3 address reference exists to deleted area

D4 command execution failure for unknown reason; PLC–3
histogram overflow

Chapter
Call Routines 69–127

13

13 -73

IndicatesCode

D5 data conversion error

D6 the scanner is not able to communicate with a 1771 chassis
adapter

D7 the adapter is not able to communicate with the module

D8 the 1771 module response was not valid

D9 duplicated label

DA file is open – another station owns it

DB another station is the program owner

Syntax
PUSH type of PLC WRITE command
PUSH remote PLC node address
PUSH file number of remote PLC
PUSH file type on remote PLC
PUSH starting word offset on remote PLC
PUSH number of elements to be transferred
PUSH message time-out value
PUSH selection of BTW buffer or internal string
PUSH 1

PUSH string number
CALL 123

POP CALL 123 status

Example
>15 PUSH 64: CALL 4: REM SET BLOCK TRANSFER WRITE LENGTH

>16 PUSH 64: CALL 5: REM SET BLOCK TRANSFER READ LENGTH

>20 PUSH 5 : REM PLC-5 FILE

>30 PUSH 0 : REM PLC-5 NODE ADDRESS

>40 PUSH 7 : REM PLC-5 FILE NUMBER

>50 PUSH ASC(N) : REM PLC-5 FILE TYPE

>60 PUSH 0 : REM STARTING WORD OFFSET FOR PLC-5

>70 PUSH 20 : REM NUMBER OF WORDS TO TRANSFER

>80 PUSH 10 : REM COMMAND TIME-OUT VALUE (X100MS)

>90 PUSH 0 : REM USE BTW BUFFER

>100 PUSH 1 : REM ALWAYS 1

>110 PUSH 0 : REM STRING NUMBER–NA FOR THIS EXAMPLE

>120 CALL 123

>130 POP S : REM STATUS OF THE CALL

>140 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 123 SETUP”

Chapter
Call Routines 69–127

13

13 -74

Sample Ladder Logic

(L)
O:001

13

BTW

BLOCK TRANSFER WRITE

Rack

Group

Module

00

1

0

N7:5

N10:110

64

Control Block

Data file

Length

Rung 2:0

13

I:001

Rung 2:3

[END OF FILE]

(EN)

(DN)

(ER)

NContinuous

N10:0

0 Rung enable bit
(N10:0 used as example)

(U)
N10:0

Rung 2:1

(U)

O:001

0

O:001

13

BTR

BLOCK TRANSFER READ

Rack

Group

Module

00

1

0

N7:0

N10:10

64

Control Block

Data file

Length

4

I:001

(EN)

(DN)

(ER)

NContinuous

Rung 2:2

13

N7:0

15

Undefined. If you execute an undefined call, you receive the error
message, “ERROR–UNSUPPORTED CALL .”

CALL 124–127

A Appendix

 A –1

Product Overview

This appendix introduces you to the BASIC module.

This appendix describes: On page:

features A –1

programming interfaces A –5

network configurations A –7

memory requirements A –10

specifications A –11

related products A –13

The BASIC module is a single-slot module that resides in an I/O chassis.
You can use the BASIC module as a foreign device interface or as an
operator interface. The BASIC module provides math functions, report
generation and BASIC language capabilities for any Allen-Bradley
processor that communicates with the 1771 I/O system using
block-transfer.

What’s in This Appendix?

Features

Product Overview
Appendix A

 A –2

Hardware Features

Hardware element Description

Reset switch When you press this switch (located behind the module ejector tab), the
BASIC module initiates a full reset. The BASIC module reacts to this
reset the same as it does when you turn on power to your I/O chassis
backplane.

LED indicators 10 LED indicators for module diagnostics and operator indicators.
• 8 pre-defined LED indicators
• 2 user-defined LED indicators

DH485 port This RJ-45 port (DH485) provides communication over the DH-485
network.

Use DH485 port to interface the BASIC module with the DH-485 network.
This port is not isolated and cannot directly drive the DH-485 network.
You must use a 1747-AIC link coupler to link port DH485 with the DH-485
network. You can also use this port as a program port.

PRT2 port This independently configurable, isolated 25-pin D-shell serial port
provides RS-232, RS-422, and RS-485 communication with I/O devices.

Use PRT2 to interface the BASIC module with user devices or a modem
using DF1 protocol. PRT2 provides DF1 full–duplex or half–duplex slave
protocol for SCADA applications. PRT2 is capable of operating full–duplex
at 300, 600, 1200, 2400, 4800, 9600, and 19200 bit/s. It is electrically
isolated to 500V dc.

PRT1 port This independently configurable, isolated 25-pin D-shell serial port
provides RS-232, RS-422, and RS-485 communication with I/O devices.

Use PRT1 to interface the BASIC module with user devices. PRT1 is
capable of operating full–duplex at 300, 600, 1200, 2400, 4800, 9600, and
19200 bit/s. It is electrically isolated to 500V dc. You can also use this
port as a program port.

RAM 24K bytes of battery backed RAM for storage of user programs and data

Battery backup • battery-backed, 24-hour clock/calendar
• capacitive backup of RAM during battery change

Memory module • socket for a standard EEPROM or pre-programmed EPROM memory
module with a carrier

• socket for standard EEPROM or pre-programmed EPROM memory
module without a carrier

• on-board EEPROM programming

User-accessible
free-running clock

5 ms resolution

User-accessible
wall clock/calendar

1 s resolution

Backplane interface • 1771 I/O
• supports block-transfers
• multiple BASIC modules can reside in the same I/O rack and function

independently of each other

DH485

PRT2

PRT1

LED
Indicators

Reset

Product Overview
Appendix A

 A –3

Software Features

Software element Description

Programming language Intel BASIC-52 with enhancements
• high-level math functions
• full set of trigonometric instructions
• string manipulation support
• floating point calculations and conversions
• extensive call libraries

Block transfer communication data read and write support with:
• PLC-2 family processors
• PLC-3 family processors
• PLC-5 family processors
• PLC-5/250 family processors

Program and data storage options • RAM
• memory modules

Communication network support • DH-485 network
• DF1 protocol

Data type generation • 16-bit binary (4 hex digits)
• SLC 16-bit signed integer
• SLC 16-bit unsigned integer
• 3-digit, signed, fixed decimal BCD
• 4-digit, unsigned, fixed decimal BCD
• 4-digit, signed, octal
• 6-digit, signed, fixed decimal BCD
• 3.3 digit, signed, fixed decimal BCD
• 32-bit IEEE PLC-5 floating point

20371–M

Memory Module
SKT1

Memory Module
SKT2

Battery

Product Overview
Appendix A

 A –4

Diagnostic Features

The BASIC module has 10 indicator LED indicators. Use these LED
indicators for diagnostics and operator interface. Refer to Appendix C for
more information on troubleshooting.

DH485

PRT2

PRT1

LED Indication

ACTIVE indicates the module mode and whether the BASIC module
is receiving power from the backplane

FLT indicates whether a system power problem was detected
during background diagnostics

DH485 indicates whether port DH485 on the BASIC module is
active for communication

BTLO indicates whether the voltage of the battery that backs up
RAM is low

LED1 user definable. LED activated through the user program.

LED2 user definable. LED activated through the user program.

PT1X indicates whether port PRT1 on the BASIC module is
transmitting signals

PT2X indicates whether port PRT2 on the BASIC module is
transmitting signals

PT1R indicates whether port PRT1 on the BASIC module is
receiving signals

PT2R indicates whether port PRT2 on the BASIC module is
receiving signals

Appendix

Product Overview
Appendix A

 A –5

Program the BASIC module using a subset of the Intel BASIC 52
programming language. You can program the BASIC module using an
ASCII terminal or a personal computer running ASCII terminal emulation
software, such as the BASIC Development Software (catalog number
1747-PBASE).

 Refer to Chapter 2 for additional information on port configuration.

ASCII Terminal Interface

Use an ASCII terminal to enter a BASIC program one line at a time to
your BASIC module through port PRT1. The ASCII terminal connected to
the BASIC module must be an industrial terminal, workstation, or personal
computer (without the BASIC development software) that communicates
in alphanumeric mode. An ASCII terminal can also be used to display
charts or graphs generated by your BASIC program.

PLC processor
with BASIC module

Console device with ASCII
terminal emulation software

Null modem cable

In this configuration, you connect the RS-232 port on the back of your
industrial terminal or personal computer to port PRT1 on your BASIC
module. Port PRT1 must be configured as the program port.

Programming Interfaces

Chapter

Product Overview
Appendix A

 A –6

BASIC Development Software

Use a personal computer with the BASIC Development software (PBASE)
to create a BASIC program that is then downloaded to your BASIC
module. PBASE provides an efficient means to edit, compile (translate),
upload, and download BASIC programs to the BASIC module. You can
use PBASE with either the RS-232 or the DH-485 interface. You must use
PBASE software when the DH485 port is the program port,

RS-232 Interface
In this configuration, you connect the serial port on the personal computer
to port PRT1 or on the BASIC module. The personal computer
communicates with the BASIC module through terminal emulation over an
RS-232 interface. Port PRT1 is configured as the program port.

Personal computer
with PBASE software

PLC processor
with BASIC module

Null modem cable

DH-485 Interface
In this configuration, you interface the serial port on the personal computer
with port DH485 on the BASIC module through a 1747-PIC
Interface/Converter. The 1747-PIC Interface/Converter converts the
RS-232 signals from the personal computer RS-232 serial port to RS-485
format. Port DH485 is configured as the program port.

Personal computer
with PBASE software

1747-C10 cable

Interface/Converter RS-232 to RS-485 (1747-PIC)

PLC processor
with BASIC module

Refer to the BASIC Development Software Programming Manual
(publication number 1746-6.2) for additional information on this software.

Product Overview
Appendix A

 A –7

Your BASIC module may communicate with a DH-485 network. It can
also communicate with a remote device through a modem using the DF1
protocol. When using DF1 protocol on PRT2, port DH485 is disabled.

Refer to Chapter 2 for additional information on port configuration.

DH-485 Network Configuration

1747-PIC Interface/Converter/1747-AIC Link Coupler Configuration
The BASIC module interfaces with a DH-485 network through a
1747-AIC Isolated Link Coupler.

The 1747-PIC Interface/Converter converts the RS-232 signals from the
personal computer RS-232 serial port to RS-485 format. The 1747-AIC
link coupler links the converted signals with the DH-485 network and port
DH485 on the BASIC module. The 1747-AIC link coupler also provides
an interface to the DH-485 network for a personal computer with the
BASIC development software. Port DH485 must be configured as the
program port in order to communicate with PBASE software via the
DH-485 network.

PLC
processor
with
BASIC
module

1747-C11 cable

1747-C11 cable

Link
coupler
1747-AIC

Link
coupler
1747-AIC

Personal computer
with PBASE software

DH-485
communication
cable
Belden #9842

Interface/Converter
RS-232 to RS-485
(1747-PIC)

SLC 500
controller
with
BASIC
module

Important: Each BASIC module requires a link coupler port to interface it
with the DH-485 network.

Important: When using PBASE to interface with the BASIC module, you
must configure the software for DH-485 communication through the
configuration and terminal selection menus.

Network Configurations

Chapter

Product Overview
Appendix A

 A –8

1747-AIC Link Coupler/1784-KR DH-485 Interface Card
Configuration
This configuration shows the BASIC module interfaced with a DH-485
network through a 1747-AIC link coupler. The link coupler also provides
an interface to the DH-485 network for a personal computer. In this
configuration, a 1784-KR DH-485 Interface Card is installed in the
personal computer.

PLC processor
with BASIC
module

1747-C11 cable

1747-C11 cable

Link
coupler
1747-AIC

Link
coupler
1747-AIC

Personal computer
 PBASE software

1784-KR DH-485
interface card

DH-485
communication
cable
Belden #9842

SLC 500
controller
with BASIC
module
(1746-BAS)

Product Overview
Appendix A

 A –9

DF1 Protocol Configuration

The BASIC module can use DF1 to control communications with a
modem. In this configuration, the BASIC module is interfaced with a
DH-485 network through a peer-to-peer communication interface with
full-duplex, DF1 protocol.

PLC
processor
with BASIC
module

Modem

Modem

1747-C11 cable

Link
Coupler
1747-AIC

Link
coupler
1747-AIC

 Console device

DH-485
communication
cable
Belden #9842

Interface/Converter
RS-232 to RS-485
(1747-PIC)

1747-C13 cable

PLC
processor
with BASIC
module

SLC 500
controller
with
1747-KE
module

1747-C11 cable

Important: By configuring JW4 for DF1 communication on PRT2,
DH-485 communications are disabled.

ATTENTION: Do not place the BASIC module on an active
DH-485 network until the node address and communication rate
of the BASIC module are configured.

Product Overview
Appendix A

 A –10

The BASIC module offers two types of memory modules for BASIC
programming.

 A 24K byte battery-backed RAM to store BASIC programs and
protected variables

 An optional 8K or 32K byte non-volatile memory module to store
BASIC programs and port configuration. You can use these memory
module options with your BASIC module:

- 8K byte EEPROM (programmable with 1771-DB/B)

- 32K byte EEPROM (programmable with 1771-DB/B)

- 8K byte EPROM (pre-programmed with an external
PROM programmer)

- 16K byte EPROM (pre-programmed with an external
PROM programmer)

- 32K byte EPROM (pre-programmed with an external
PROM programmer)

Memory Requirements

Product Overview
Appendix A

 A –11

Environmental Conditions

Condition Range

Operating temperature 0° C to 60° C (32° F to 140° F)

Storage temperature –40° C to 85° C (–40° F to 185° F)

Relative humidity 5% to 95% (non–condensing)

Backplane Power Consumption

Operating voltage Current requirement

5V dc .75 Amps

Important: The BASIC module receives its power from the 1771-I/O
backplane. The power consumption of the BASIC module must be taken
into consideration when planning your PLC system. Refer to the
documentation supplied with your PLC processor or 1771-I/O equipment
for additional information on power supplies and current requirements.

Port Driver and Receiver

Drive output Receiver sensitivity

+3.6 V minimum 200 mV minimum

Module Location

One 1771 I/O chassis module slot. See Chapter 1 for further details.

Keying

Top backplane connector:

 between 8 and 10
 between 32 and 34

See Chapter 1 for further details.

 Specifications

Chapter

Keying Clips

.

Upper
Connector

Chapter

Product Overview
Appendix A

 A –12

Port Isolation

Port Isolation Isolation voltage

PRT1 backplane to port 500V dc

PRT2 backplane to port 500V dc

PRT1 and PRT2 PRT1 to PRT2 500V dc

Important: Port DH485 is not isolated.

Clock/Calendar Accuracy

Specification Range

u
± 1 minute/month @ 25° C

accuracy
+ 0, – 6 minute/month @ 60° C

Math

Precision Range

8 significant digits �1E–127 to �.99999999E+127

Maximum Communication Distances

Communication Maximum distance allowed meters (feet)
rate (bit/s) RS-232 RS-423 RS-422 RS-485

300 15 (50) 15 (50) 1230 (4000) 1230 (4000)

600 15 (50) 15 (50) 1230 (4000) 1230 (4000)

1200 15 (50) 15 (50) 1230 (4000) 1230 (4000)

4800 15 (50) 15 (50) 1230 (4000) 1230 (4000)

9600 15 (50) 15 (50) 1230 (4000) 1230 (4000)

19200 15 (50) 15 (50) 1230 (4000) 1230 (4000)

Important: Use the RS-232 jumper settings for JW8 or JW9 when
communicating in RS-423 mode (page 1 -9). RS-423 devices should be
unterminated and cable length should be a maximum 50 ft.

Product Overview
Appendix A

 A –13

Product Catalog number

8K byte EEPROM memory module (supports turbo mode)

8K byte EEPROM memory module (supports normal mode only)

1771-DBMEM1

1747-M1

32K byte EEPROM memory module (supports turbo mode)

32K byte EEPROM memory module (supports normal mode only)

1771-DBMEM2

1747-M2

8K byte UVPROM memory module (supports normal mode only) 1747-M3

32K byte UVPROM memory module (supports normal mode only) 1747-M4

BASIC Development Software 1747-PBASE

communication cable (72” length, interchangeable with C-11 and C-20 cables) 1747-C10

communication cable (12” length, interchangeable with C-10 and C-20 cables) 1747-C11

communication cable (100” length, interchangeable with C-10 and C-11 cables) 1747-C20

communication cable (36” length, different from C-10, C-11, C-20 cables) 1747-C13

personal computer to DH-485 interface card 1784-KR

interface/converter (RS-232 to RS-485) 1747-PIC

link coupler 1747-AIC

A C tool kit is available from one of our Pyramid Solutions Program
partners (see the Pyramid Solutions Program Product Directory, PSP-5.1).

For additional information on these products, refer to your local
Allen-Bradley sales office.

Related Products

Product Overview
Appendix A

 A –14

Notes:

B Appendix

 B –1

Conversion Table

The table below lists the decimal, hexadecimal, octal, and ASCII
conversions.

Refer to Chapter 8 for information on data types.

Column 1 Column 2 Column 3 Column 4

DEC HEX OCT ASCII DEC HEX OCT ASCII DEC HEX OCT ASCII DEC HEX OCT ASCII

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

SP
!
”
#
$
%
&
’
(
)
*
+
,
–
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
135
137

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

‘
a
b
c
d
e
 f

 g
h
i
j
 k
l

m
 n
o
p
q
 r
 s
 t
u
 v
w
x
y
z
{
.
}
~

DEL

What’s in This Appendix?

Chapter

Appendix B

 B –2

Notes:

C Appendix

 C –1

Troubleshooting

This appendix describes: On page:

interpret the indicator lights C –1

error messages from BASIC C –2

error messages from CALL routines C –4

The BASIC module has 10 indicator LED indicators.

If this LED: Status is: This indicates:

ON the BASIC module is receiving power from the backplane
and is executing BASIC code

ACTIVE (green) blinking the BASIC module is in Command mode

OFF the BASIC module is not receiving power from the
backplane. A fault condition exists.

FLT (red)

ON a system problem was detected during background
diagnostics. Contact your local Allen–Bradley
representative.FLT (red)

OFF no system problems detected during background
diagnostics

ON port DH485 on the BASIC module is active for
communication

DH485 (green)
OFF port DH485 on the BASIC module is not active for

communication

ON the voltage of the battery that backs up RAM is low. A new
battery is needed. See Chapter 3.

BTLO (red)
OFF the voltage of the battery that backs up RAM is at an

acceptable level
ON user definable. LED activated through the user program.

LED1 (amber)
OFF user definable. LED de-activated through the user program.

ON user definable. LED activated through the user program.
LED2 (amber)

OFF user definable. LED de-activated through the user program.

blinking port PRT1 on the BASIC module is transmitting signals
PT1X (green)

OFF port PRT1 on the BASIC module is not transmitting signals

blinking port PRT2 on the BASIC module is transmitting signals
PT2X (green)

OFF port PRT2 on the BASIC module is not transmitting signals

blinking port PRT1 on the BASIC module is receiving signals
PT1R (green)

OFF port PRT1 on the BASIC module is not receiving signals

blinking port PRT2 on the BASIC module is receiving signals
PT2R (green)

OFF port PRT2 on the BASIC module is not receiving signals

What’s in This Appendix?

Interpret the Indicator Lights

Troubleshooting
Appendix C

 C –2

When BASIC is in Run mode the format of the error messages is:

Error:

XXX - IN LINE YYY

YYY BASIC STATEMENT
-------X

Where:

XXX is the error type. The X shows approximately where the error
occurred in the line number. The specific location of the X may be off by
one or two characters or expressions depending on the type of error and
where the error occurred in the program. If an error occurs in the
command mode only the error type is printed out, not the line number.

YYY is the line number of the program in which the error occurred. For
example,

ERROR: BAD SYNTAX - IN LINE 10

10 PRINT 34*21*
--------X

Here are the BASIC module’s error messages:

This error
message:

Occurs when:

A-STACK the A-stack (argument stack) pointer is forced “out of bounds.” An “out of
bounds” condition occurs if:
• you overflow the argument stack by PUSHing too many expressions onto the

stack, or
• you attempt to POP data off the stack when no data is present

ARITH.
OVERFLOW

an arithmetic operation exceeds the upper limit of a module floating point number.
The largest floating point number in the BASIC Module is +/-.99999999E+127.

for example: 1E+70*1E+70 causes an ARITH. OVERFLOW error.

ARITH.
UNDERFLOW

an arithmetic operation exceeds the lower limit of a module floating point number.
The smallest floating point number in the BASIC Module is +/-1E-127.

for example: 1E-80/1E+80 causes an ARITH. UNDERFLOW error.

ARRAY SIZE an array is dimensioned by a DIM statement and you attempt to access a variable
that is outside of the dimensioned bounds

for example:

>DIM A (10)
>PRINT A(11)

ERROR: ARRAY SIZE
READY
>

Error Messages from BASIC

Troubleshooting
Appendix C

 C –3

Occurs when:This error
message:

BAD ARGUMENT the argument of an operator is not within the limits of the operator

for example:

SQR(-12) generates a BAD ARGUMENT error because the value of the SQR
argument is limited to positive numbers

BAD SYNTAX an invalid BASIC module command, statement or operator is entered and BASIC
cannot process the entry

C-STACK • the C-stack (control stack) pointer is forced “out of bounds”
• you attempt to use more control stack than is available in the module
• you execute a RETURN before a GOSUB, a WHILE or UNTIL before a DO, or

a NEXT before a FOR (See Chapter 11 for a description of these statements.)
• you jump out of loop structures such as DO WHILE

CAN’T CONTINUE • you edit the program after halting execution and then enter the CONT
command

• you enter while in a call routine

you can halt program execution by either entering or by

executing a STOP statement. Normally, program execution continues after

entering the CONT command. You must enter during program

execution or you must execute a STOP statement before the CONT command
can work.

Ctrl + C

Ctrl + C

Ctrl + C

DIVIDE BY ZERO you attempt to divide by zero

EXTRA IGNORED an INPUT statement (page 11 -17) requiring numeric data, receives numeric data
followed by letters. Letters are ignored. Error also occurs from CALL 61 (page
12 -60).

MEMORY
ALLOCATION

• user memory (RAM) is full
• BASIC cannot determine memory bounds because the system control value

MTOP is altered
• RAM contains an incomplete program file
• you attempt to access STRINGS that are “outside” the defined string limits

NO DATA a READ statement is executed and no DATA statement exists or all DATA was
read and a RESTORE instruction was not executed. (See Chapter 11 for a
description of these statements.)

the message ERROR: NO DATA - IN LINE XXX is printed to the console device.

PROGRAMMING the BASIC module is programming an EEPROM. An error during programming
destroys the EPROM file structure. You cannot save any more programs on that
particular EEPROM once a PROGRAMMING error occurs. If the EEPROM size is
exceeded, the previously stored program may be partially altered.

Application errors such as divide by zero error, syntax error, receipt of a

Ctrl + C (page 10 -4), and execution of STOP (page 11 -36) or END

(page 11 -10) statements cause the BASIC module to return to the
Command mode from Run mode. Use CALL 38 (EXPANDED ONERR)
(page 12 -36) to jump to an interrupt routine instead of returning to the
Command mode.

Troubleshooting
Appendix C

 C –4

Your module generates these messages if an error occurs while the module
tries to execute a CALL routine.

PRT2 Port Support CALL Error Messages

This error message: Occurs when:

INVALID INPUT DATA you enter an invalid value when using CALL 30

INVALID VALUE
PUSHED

you enter a value other then 0, 1 or 2 when using CALL 37

Wall Clock CALL Error Messages

This error message: Occurs when:

INSUFFICIENT
NUMBER OF STRING
CHARACTERS
ALLOCATED

you attempt to execute a CALL 43, 45 or 52 and a string length of 18, 8 or 9,
respectively, is not allocated during string allocation

INVALID DATE/TIME
PUSHED

you enter an invalid value for the date and/or time when using CALL 40 and 4l

NUMBER
BYTES/STRING
EXCEED 254

using CALL 43, 45 or 52 and the STRING X,X command allocates more
characters per string than is allowed

For example:

10 STRING 1000,300

INVALID NUMBER
PUSHED

you push an invalid string value or day of week value using CALL 42, 43 and 52.

STRING # NOT
ALLOCATED

you attempt to access a string that is outside the allocated string memory when
using CALLs 60, 61, 64, 65, 66, 67 or 68

for example:

>10 STRING 100,9
>20 PUSH 5, 12
>30 CALL 60
>RUN

ERROR - STRING # NOT ALLOCATED

error occurs because STRING 12 is outside the area reserved for strings.

BYTES/STRING
EXCEED 254

the STRING X,X command allocates more characters per string than is allowed
using CALL 62

for example:

>10 STRING 1000,300

INSUFFICIENT
NUMBER OF STRING
CHARACTERS

you do not use the required minimum string lengths when using CALL 62

BAD # PUSHED the string position pointer is zero (invalid position) using CALL 66

Error Messages from CALL
Routines

Troubleshooting
Appendix C

 C –5

String Support CALL Error Messages

This error message: Occurs when:

INSUFFICIENT
STRING SIZE

the resulting string cannot hold all required characters when using CALLs 61 or
66

for example:

>10 STRING 100,9 REM MAX OF 9 CHR’S/STRING
>20 $(0)=“01234567”
>30 $(1) = “890”

if you attempt to insert or concatenate, an error occurs because the resulting
string requires 11 characters

BAD POSITION you attempt to access a string position that is beyond the declared length of the
string when using CALL 66

for example:

>10 STRING 110,9
>20 $(0)=“1234”
>30 $(1)=“56”
>40 PUSH 6 REM INVALID POSITION OF $(0)
>50 PUSH 1 REM $(1)
>60 PUSH 0 REM $(0)
>70 CALL 66 REM INSERT $(1) INTO $(0) @ POS 6

error occurs because position 6 is outside of the declared string.

EXTRA IGNORED the resulting string cannot hold all the characters when using CALL 61.
Similar to INSUFFICIENT STRING SIZE error. Extra characters are lost.

INPUT an input statement requiring numeric data, received numeric data followed by
letters. The letters are ignored.

for example:

INPUT A

entering 1.23AB causes this error message. The program continues to run.

Memory Support CALL Error Messages

This error message: Occurs when:

INVALID MTOP
ADDRESS ENTERED

you select an invalid RAM location for a new MTOP value when using CALL 77

PROGRAM NOT
FOUND

a program number higher than 255 is PUSHed when using CALL 71 or 72 or if
the program is not found

Troubleshooting
Appendix C

 C –6

Miscellaneous CALL Error Messages

This error message: Occurs when:

INVALID BAUD RATE
ENTERED

a communication rate other than 300, 600, 1200, 2400, 4800, 9600 or 19200
bit/s is PUSHed using CALL 78

INCOMPLETE ROM
PROGRAM FOUND

CALL 81 detects an incomplete program in the memory module. You can burn
no additional programs onto this EEPROM. All earlier programs are still
accessible

NO PROGRAM
FOUND BUT THE
PROM IS NOT
BLANK

miscellaneous data is found on a “blank” PROM using CALL 81. You should
clear the PROM before using it.

D Appendix

 D –1

Series A Configuration Plugs

This appendix gives you the configuration plug settings for the Series A
BASIC module. If you have a Series B module this information is not
relevant. The Series B module does not have configuration plugs.
However, it does have configuration jumpers. These jumper settings are
described in Chapter 1.

There are three sets of user selectable configuration plugs on the Series A
BASIC module. You can use these configuration plugs to select:

 EPROM size
 peripheral port communication rate (bit/s)
 422 receiver termination

9600
4800
2400
1200
600
300

Peripheral Port

422 Receiver Type

422 receiver

Unterminated

User PROM Size

8K or 16K byte
(center + right pins

32K byte
(left + center pins

17898

jumpered)

jumpered) 1

100 Ohm terminated

(top and center pins jumpered)

(center and bottom pins jumpered)

Factory Setting

1

1

1

19200

Communication Rate (bit/s)

Important: All other configuration plugs are factory set. Do not reset the
the other factory set configuration plugs.

What’s in This Appendix?

Chapter

Configuration Plugs

Appendix D

 D –2

Notes:

E Appendix

 E –1

Quick Reference

This appendix gives you an alphabetical quick reference table to the
different, operators (Chapter 9), commands (Chapter 10), statements
(Chapter 11), and calls (Chapters 12 and 13) the BASIC module supports.

BASIC Description Page

ABS return the absolute value of expression 9 -11

ADD (+) add expressions together 9 -5

.AND. combine the first expression with the second
expression using .AND.

9 -7

ASC return integer value of ASCII character 9 -14

ATN return arctangent of argument 9 -11

BRKPNT sets a breakpoint 10 -2

CALL 0 reset module 12 -2

CALL 2 timed-block-transfer-read buffer 12 -2

CALL 3 timed-block-transfer-write buffer 12 -3

CALL 4 set block-transfer-write length 12 -4

CALL 5 set block-transfer-read length 12 -4

CALL 6 block-transfer-write buffer 12 -5

CALL 7 block-transfer-read buffer 12 -5

CALL 10 3-digit decimal BCD to BASIC floating point 12 -6

CALL 11 16-bit binary to BASIC floating point 12 -7

CALL 12 4-digit octal to BASIC floating point 12 -7

CALL 13 6-digit decimal BCD to BASIC floating point 12 -8

CALL 14 SLC 16-bit signed integer to BASIC floating point 12 -8

CALL 15 SLC 16-bit unsigned integer to BASIC floating point 12 -9

CALL 16 enable/disable DF1 packet interrupt 12 -10

CALL 17 4-digit BCD to BASIC floating point 12 -11

CALL 18 re-enable control C break function 12 -11

CALL 19 disable the control C break function 12 -12

CALL 20 BASIC floating point to 3-digit decimal BCD 12 -12

CALL 21 BASIC floating point to 16-bit binary 12 -13

CALL 22 BASIC floating point to 4-digit octal 12 -13

CALL 23 BASIC floating point to 6-digit decimal BCD 12 -14

CALL 24 BASIC floating point to SLC 16-bit signed integer 12 -15

CALL 25 BASIC floating point to SLC 16-bit binary 12 -16

CALL 26 BASIC floating point to 3.3-digit BCD 12 -17

CALL 27 BASIC floating point to 4-digit BCD 12 -17

CALL 29 read/write to PLC/SLC from module internal string 12 -18

CALL 30 PRT2 port support parameter set 12 -20

What’s in This Appendix?
Chapter

Quick Reference
Appendix E

 E –2

PageDescriptionBASIC

CALL 31 display PRT2 port parameters 12 -21

CALL 32 enable/disable processor interrupt 12 -22

CALL 33 transfer data from PRT1/PRT2 to BTR buffer 12 -23

CALL 34 transfer data from BTW buffer to PRT1/PRT2 12 -29

CALL 35 retrieve numeric input character from PRT2 port 12 -34

CALL 36 get number of characters in PRT2 port buffers 12 -35

CALL 37 clear PRT2 port buffers 12 -35

CALL 38 expanded ONERR restart 12 -36

CALL 39 3.3-Digit Signed, BCD to BASIC Floating Point 12 -38

CALL 40 set wall clock time 12 -39

CALL 41 set wall clock date 12 -40

CALL 42 set wall clock day of week 12 -40

CALL 43 date/time retrieve string 12 -41

CALL 44 date retrieve numeric 12 -41

CALL 45 time retrieve string 12 -42

CALL 46 time retrieve numeric 12 -42

CALL 47 retrieve day of week string 12 -43

CALL 48 retrieve day of week numeric 12 -43

CALL 49 read remote DH-485 SLC data file 12 -44

CALL 50 write to remote DH-485 SLC data file 12 -50

CALL 52 date retrieve string 12 -58

CALL 60 string repeat 12 -59

CALL 61 string append 12 -60

CALL 62 number to string conversion 12 -61

CALL 63 string to number conversion 12 -62

CALL 64 find a string in a string 12 -63

CALL 65 replace a string in a string 12 -64

CALL 66 insert a string in a string 12 -65

CALL 67 delete a string from a string 12 -66

CALL 68 determine length of a string 12 -67

CALL 70 ROM to RAM program transfer 13 -2

CALL 71 ROM/RAM to ROM program transfer 13 -3

CALL 72 RAM/ROM return 13 -4

CALL 73 battery-backed RAM disable 13 -5

CALL 74 battery-backed RAM enable 13 -5

CALL 77 protected variable storage 13 -6

CALL 78 set program port communication rate 13 -8

CALL 79 set active LED blinking state (no operation) 13 -8

CALL 80 check battery condition 13 -9

CALL 81 user PROM check and description 13 -10

CALL 82 check user memory module map 13 -11

CALL 83 display DH485 port setup 13 -11

CALL 84 transfer DH-485 CIF to BASIC input buffer 13 -12

CALL 85 transfer BASIC output buffer to DH-485 CIF file 13 -13

CALL 86 check DH-485 interface remote write status 13 -14

Quick Reference
Appendix E

 E –3

PageDescriptionBASIC

CALL 87 check DH-485 interface file remote read status 13 -15

CALL 88 BASIC floating point to PLC-5 floating point 13 -16

CALL 89 PLC-5 floating point to BASIC floating point 13 -17

CALL 90 read remote DH-485 data file to BASIC input buffer 13 -18

CALL 91 write BASIC output buffer to remote DH-485 data file 13 -22

CALL 92 read remote DH-485 CIF to BASIC input buffer 13 -26

CALL 93 write output buffer to remote DH-485 CIF file 13 -29

CALL 94 display current PRT1 port setup 13 -32

CALL 95 get number of characters in PRT1 buffers 13 -32

CALL 96 clear PRT1receive/transmit buffers 13 -33

CALL 97 enable PRT2 DTR signal 13 -33

CALL 98 disable PRT2 DTR signal 13 -34

CALL 99 reset print head pointer 13 -34

CALL 100 download/program assembly language to EEPROM 13 -35

CALL 101 upload user (E)EPROM code to host 13 -35

CALL 103 print PRT1 transmit buffer and pointer 13 -36

CALL 104 print PRT1 receive buffer and pointer 13 -37

CALL 105 reset PRT1 to default settings 13 -37

CALL 108 enable DF1 driver communications 13 -38

CALL 109 print the argument stack 13 -44

CALL 110 print the PRT2 port transmit buffer and pointer 13 -45

CALL 111 print the PRT2 receive buffer and pointer 13 -46

CALL 112 user LED control 13 -47

CALL 113 disable DF1 driver communications 13 -47

CALL 114 transmit DF1 packet 13 -48

CALL 115 check DF1 status 13 -49

CALL 116 call user defined assembly language routine 13 -50

CALL 117 get DF1 packet length 13 -51

CALL 118 PLC/SLC unsolicited writes 13 -52

CALL 119 reset PRT2 port to default settings 13 -56

CALL 120 clear BASIC module I/O buffers 13 -57

CALL 122 read remote DF1 PLC data file 13 -58

CALL 123 write to remote DF1 PLC data file 13 -66

CBY retrieve data from core or program memory address
location

9 -18

CHR convert numeric expression to ASCII value 9 -16

CLEAR sets all variables equal 0 and resets all BASIC
evoked interrupts and stacks

11 -2

CLEARI resets all BASIC evoked interrupts 11 -3

CLEARS resets all stacks 11 -3

CLOCK0 disable or turn off free-running clock 11 -4

CLOCK1 enable or turn on free-running clock 11 -5

CONT continue after a CTRL-C 10 -3

COS return the cosine of argument 9 -10

CTRL C stops program execution 10 -4

Quick Reference
Appendix E

 E –4

PageDescriptionBASIC

CTRL Q restart a LIST or PRINT interrupted by CTRL-S 10 -5

CTRL S interrupt the scrolling of code during a LIST or
PRINT

10 -6

DATA specify the expressions that you can retrieve with a
READ

11 -6

DBY retrieve/assign data to/from internal data memory 9 -18

DIM reserve storage for arrays 11 -7

DIVIDE (/) divide first expression by second expression 9 -5

DO-UNTIL set up loop control 11 -8

DO-WHILE set up loop control 11 -9

EDIT access the BASIC line editor 10 -7

END terminate program execution 11 -10

EOF test for empty input buffer 9 -17

ERASE delete BASIC program stored in EEPROM through
a PROG

10 -8

EXP raise e to power of argument 9 -13

** raise first expression by the power of the second
expression

9 -5

FREE list available bytes in RAM 9 -17

FOR-TO-(STEP)-NEXT set up loop control 11 -11

GET read console input device 11 -12

GOSUB transfer control to a subroutine 11 -13

GOTO transfer control to line specified 11 -14

IDLE forces module to wait for an interrupt 11 -14

IF-THEN-ELSE set up a conditional test 11 -15

INPL read entire line from program port buffer 11 -16

INPS read an entire string from program port buffer 11 -16

INPUT enter data from consoled device 11 -17

INT return integer portion of expression 9 -12

LEN list amount of bytes in current program 9 -17

LOG () return the natural log of the argument 9 -13

LD@ retrieve floating point numbers stored with ST@ 11 -18

LET assign a variable to the value of an expression 11 -19

LIST list the program code 10 -9

MODE set port parameters for PRT1, PRT2, and DH485 11 -20

MTOP return last valid memory address 9 -18

MULTIPLY (*) multiply expressions together 9 -5

– negation 9 -6

NEW delete program and all variables currently stored in
RAM

10 -10

NEXT returns FOR-TO-NEXT loop to beginning of loop 11 -21

NOT returns the one’s complement or inverse of the
number

9 -11

NULL set number of null characters to output after a
carriage return in a print statement

10 -10

ONDF1 enable or disable the DF1 packet interrupt capability 11 -22

ONERR handle arithmetic errors during program execution 11 -23

Quick Reference
Appendix E

 E –5

PageDescriptionBASIC

ON-GOSUB transfer control to subroutine when expression
following ON is encountered

11 -24

ON-GOTO transfer control to line specified when expression
following ON is encountered

11 -26

ONTIME use to compensate for incompatibility between
timers/counters on the microprocessor and the
BASIC module

11 -25

.OR. combine the first expression with the second
expression using .OR.

9 -8

PI store constant. PI 9 -12

PH0. and PH1. direct BASIC module to print a number in
hexadecimal format to a console device

11 -27

POP remove value from argument stack 11 -28

PRINT output value to the console device 11 -29

PROG program resident EEPROM with current program in
RAM

10 -11

PROG1 program resident EEPROM with port information for
all three ports as well as MTOP information

10 -12

PROG2 program resident EEPROM with port information for
all three ports as well as MTOP information and
execute first program in the EEPROM

10 -13

PUSH place expression on argument stack 11 -30

RAM select current program out of RAM 10 -15

READ retrieve expressions specified in DATA statement 11 -31

REM specify a comment line in BASIC program 11 -32

REN renumber program lines 10 -16

RESTORE reset internal pointer to beginning of data to read it
again

11 -32

RETI exit from an interrupt that is processed 11 -33

RETURN return control back to program after executing a
GOSUB

11 -34

RND return a pseudo–random number 9 -12

ROM select current program out of EEPROM or EPROM 10 -17

RROM select and run current program out of EEPROM or
EPROM

10 -18

RUN set variables to zero, clear BASIC evoked interrupts,
and begin program execution with the first line
number of selected program

10 -19

SGN return the sign of argument 9 -12

SIN return the sine of argument 9 -10

SQR return the square root of the argument 9 -12

SNGLSTP initiate single-step execution 10 -20

ST@ store floating point numbers to a specified address 11 -35

STOP break program execution at specific points in the
program

11 -36

STRING allocate memory for strings 11 -37

SUBTRACT (–) subtract one expression from another 9 -5

TAN return the tangent of argument 9 -10

TIME read/assign the free running clock 9 -19

Quick Reference
Appendix E

 E –6

PageDescriptionBASIC

VER print current version of the firmware 10 -21

XBY read/assign external data memory 9 -19

XFER transfer the current selected program in ROM to
RAM and select RAM mode

10 -21

.XOR. combine the first expression with the second
expression using .XOR.

9 -8

@ or # communication direction 9 -17

= allow the first expression to equal the second
expression

9 -9

< allow the first expression to be less than the second
expression

9 -9

<= allow the first expression to be less than or equal to
the second expression

9 -9

> allow the first expression to be greater than the
second expression

9 -9

>= allow the first expression to be greater than or equal
to the second expression

9 -9

<> allows the first expression to be unequal to the
second expression

9 -9

Index

I-1

Symbols
.AND., logical operator, 9-7
.OR., logical operator, 9-8
.XOR., logical operator, 9-8
BYTES/STRING EXCEED 254,
C-4
operator, SOC-3, 9-17
@ operator, SOC-3, 9-17
+, addition operator, 9-5
-

negation operator, 9-6
subtraction operator, 9-5

*, multiplication operator, 9-5
**, exponentiation operator, 9-5

See also EXP
/, division operator, 9-5
=, equal to relational operator, 9-9
<, less than relational operator, 9-9
<=, less than or equal to relational
operator, 9-9
>, greater than relational operator,
9-9
>=, greater than or equal to
relational operator, 9-9
<> not equal to relational operator,
9-9

Numbers
1-slot addressing, 1-9
1/2-slot addressing, 1-9
16 point mode, SOC-2, 5-2

See also data tables; JW5
CALL 118, 13-52
CALL 122, 13-58
CALL 123, 13-66
CALL 32, 12-22
CALL 33, 12-23
CALL 34, 12-29
CALL 49, 12-44
CALL 50, 12-50
configuration jumper JW5, 1-6

16-bit binary, 8-5
See also CALLs 11 and 25

16-bit binary to BASIC floating
point, CALL 11, 12-7

See also CALL 21
1747-M1, 8K EEPROM, 3-4
1747-PIC Interface/Converter,
2-12, A-7
1747-AIC Isolated Link Coupler,
2-11, 2-12, A-7
1747-C10 Cable, 2-10, 2-11
1747-C11 Cable, 2-10, 2-11
1747-C13 Cable, 2-10, 2-11
1747-C20 Cable, 2-10, 2-11
1747-KE DH-485/RS-232C
Communication Interface Module,
2-10, 2-11, A-8
1747-PIC Interface/Converter, 2-9,
2-11, 2-12, A-7
1747-M2, 32K EEPROM, 3-4
1747-M3, 8K EPROM, 3-4
1747-M4, 32K EPROM, 3-4
1770-SA/SB data recorder, SOC-5
1770-KF3 DH-485
Communication Interface Module,
2-10, 2-11, A-8
1771-DBMEM1, 8K EEPROM,
3-4
1771-DBMEM2, 32K EEPROM,
3-4
1784-KR DH-485 Interface Card,
2-11, 2-13, A-7
2-slot addressing, 1-9
3.3-digit, signed,fixed decimal
BCD, 8-8

See also CALL 26, 39
3.3-digit signed, fixed decimal
BCD to BASIC floating point,
CALL 39, 12-38

See also CALL 26
3-digit signed BCD to floating
point, CALL 10, 12-6

See also CALL 20
3-digit, signed, fixed decimal
BCD, 8-5

See also CALLs 10 and 20

Index

I-2

4-digit BCD to BASIC floating
point, CALL 17, 12-11

See also CALL 27
4-digit signed octal to BASIC
floating point, CALL 12, 12-7

See also CALL 22
4-digit, signed octal, 8-6

See also CALLs 12 and 22
4-digit, unsigned, fixed, decimal
BCD, 8-6

See also CALLs 17 and 27
6-digit signed, fixed decimal BCD
to BASIC floating point, CALL
13, 12-8

See also CALL 23
6-digit, signed, fixed decimal
BCD, 8-7

See also CALLs 13 and 23
8 point mode, SOC-2, 5-2

See also data tables; JW5
configuration jumper JW5, 1-6

A
A-stack, 8-1, 11-28, C-2

See also argument stack
print, CALL 109, 13-44

abbreviations, Using-3
ABS, functional operator, 9-11
add (+), arithmetic operator, 9-5
addressing, 1-9, 5-3

1-slot, 1-9
1/2-slot, 1-9
2-slot, 1-9

Allen-Bradley support, Using-6
AND, 9-7
argument stack, 8-1, 11-28, C-2

See also A-stack
print, CALL 109, 13-44

ARITH. OVERFLOW, C-2
ARITH. UNDERFLOW, C-2
arithmetic operators, 9-5

add(+), 9-5
divide(/), 9-5
exponentiation(**), 9-5

See also EXP
multiply(*), 9-5
negation(-), 9-6
overflow and division by zero,
9-6

See also ONERR, CALL
38

subtract(-), 9-5
ARRAY SIZE, C-2
arrayed variables, 9-2
ASC, string operator, 9-14

See also STRING
ASCII conversion table, B-1
ASCII port

See also PRT1 port, PRT2 port
configuration jumper JW4, 1-5
definition, Using-3
parameters, 2-8

See also MODE, CALL
30

PRT1 port, 2-8
PRT2 port, 2-8

ASCII terminal emulator, 4-3
ASCII terminal interface, A-5
assembly language

call routine, CALL 116, 13-50
download/program EEPROM,
13-35

asynchronous block-transfer,
PLC-5 processor, 5-10
asynchronous block-transfers, 5-3
ATN, trigonometric operator, 9-11
audience of manual, Using-1

B
background operations calls, 7-6
backplane configuration, JW5, 1-6
backplane conversion calls, 7-4

See also Chapter 8
backplane conversion data, 8-4
backplane conversion table, B-1
backplane interface, A-2
BAD # PUSHED, C-4

Index

I-3

BAD ARGUMENT, C-3
BAD POSITION, C-5
BAD SYNTAX, C-3
BASIC, definition, Using-3
BASIC Development Software,
ordering, A-13
BASIC Development Software
(PBASE), Using-3, A-6

RS-232 interface, 2-9
RS-485 interface, 2-9

BASIC floating point 3.3-digit
signed BCD, CALL 26, 12-17

See also CALL 39
BASIC floating point to 16-bit
binary, CALL 21, 12-13

See also CALL 11
BASIC floating point to 3-digit,
signed, fixed decimal BCD, CALL
20, 12-12

See also CALL 10
BASIC floating point to 4-digit
BCD, CALL 27, 12-17

See also CALL 17
BASIC floating point to 4-digit
signed octal, CALL 22, 12-13

See also CALL 12
BASIC floating point to 6-digit
signed fixed decimal BCD, CALL
23, 12-14

See also CALL 13
BASIC floating point to PLC-5
floating point, CALL 88, 13-16

See also CALL 89
BASIC floating point to SLC
16-bit binary, CALL 25, 12-16

See also CALL 15
BASIC floating point to SLC
16-bit signed integer, CALL 24,
12-15

See also CALL 14
BASIC module

ASCII terminal interface, A-5
BASIC Development Software,
2-9

BASIC Development Software
(PBASE), 2-9
compatibility, SOC-1
DF1 communication interface,
2-10
DF1 protocol configurations,
A-9
DH-485 communication
interface, 2-11
diagnostic features, A-4
disassembling, 3-3
features, A-1
floating point, 8-9

See also CALLs 88 and 89
hardware features, A-2
installing, 1-11
memory organization, 5-1
network configurations, A-7
placement, 1-9
programming, 4-1
reassembling, 3-11
removing from I/O chassis, 3-2
software features, A-3

BASIC module buffers, clear,
CALL 120, 13-57
BASIC module input buffer
offsets, 5-1

See also BTR buffer
BASIC module output buffer
offsets, 5-1

See also BTW buffer
BASIC-52, A-3
battery, 3-8

See also CALL 80; JW7
Allen-BRadley 1770-XY, 3-8
installing, 3-8
location on board, 3-9
MAXELL ER3STC, 3-8
replacing, 3-8
Tadiran 15-51-03-210-000, 3-8

battery backup, A-2
battery condition, 13-9

See also JW7
battery enable, JW7, 1-8

Index

I-4

See also CALLs 73, 74, 80
battery-backed RAM disable,
CALL 73, 13-5

See also JW7
battery-backed RAM enable,
CALL 74, 13-5

See also JW7
baud rates. See communication
rates
BCC error checking, CALL 108,
13-38
bitwise operations, truth table, 9-7
bitwise operators, 9-7

.AND., 9-7

.OR., 9-8

.XOR., 9-8
block-transfer

asynchronous, 5-10
bi-directional, 5-5
CALL 2, 12-2
CALL 3, 12-3
CALL 4, 12-4
CALL 5, 12-4
CALL 6, 12-5
CALL 7, 12-5
calls, 5-5
input bits, 1-6

See also data tables
output bits, 1-6

See also data tables
PLC-2 processor, 5-8
PLC-2 sample ladder logic, 5-8
PLC-3 processors, 5-9
PLC-3 sample ladder logic, 5-9
PLC-5 sample ladder logic,
5-10, 5-11
PLC-5/250 processors, 5-12
PLC-5/250 sample ladder logic,
5-12
programming, 5-1
programming hints, 5-6
sample BASIC program, 5-7
support calls, 7-3

See also Chapter 5

synchronous, 5-11
block-transfer communication,
A-3
block-transfer-read buffer. See
BTR buffer
block-transfer-write buffer, SOC-3

See also BTW buffer
CALL 6, 12-5

block-transfers
asynchronous, 5-3
handshaking, 5-2
synchronous, 5-3

block-transfer-read buffer, 5-4
See also CALLs 2, 5, 7

block-transfer-write buffer, 5-4
See also CALLs 3, 4, 6

block-transfer-read buffer, CALL
7, 12-5
BRKPNT, 10-2

BASIC command, 6-4
See also CONT

BTR buffer, 5-1, 5-4
See also CALLs 2, 5, 7; input
buffer
definition, Using-3
transfer data from PRT1 or
PRT2 port to, 12-23

BTW buffer, 5-1, 5-4
See also CALLs 3, 4, 6; output
buffer
definition, Using-3
transfer data to PRT1 or PRT2
from, 12-29

C
C programming, 4-3
C tool kit, SOC-3

ordering, A-13
C-stack, 8-1, C-3

See also control stack
cable connector

DH485 port, 2-3
PRT1 and PRT2, 2-2

cable lengths, 2-6

Index

I-5

cable pinout
DB25, 2-2
RJ45, 2-3

cables, 2-11
calendar, A-2
calendar calls, 7-4
CALL 0, reset module, 12-2
CALL 1, no operation, 12-2
CALL 2,
timed-block-transfer-read buffer,
12-2
CALL 3,
timed-block-transfer-write buffer,
12-3
CALL 4, set block-transfer-write
length, 12-4
CALL 5, set block-transfer-read
length, 12-4
CALL 6, block-transfer-write
buffer, 12-5
CALL 7, block-transfer-read
buffer, 12-5
CALL 8, no operation, 12-6
CALL 9, no operation, 12-6
CALL 10, 3-digit signed BCD to
floating point, 12-6

See also CALL 20
CALL 11, 16-bit binary to BASIC
floating point, 12-7

See also CALL 21
CALL 12, 4-digit signed octal to
BASIC floating point, 12-7

See also CALL 22
CALL 13, 6-digit signed, fixed
decimal BCD to BASIC floating
point, 12-8

See also CALL 23
CALL 14, SLC 16-bit signed
integer, 12-8

See also CALL 24
CALL 15, SLC 16-bit unsigned
integer to BASIC floating point,
12-9

See also CALL 25

CALL 16, enable/disable DF1
packet interrupt, 12-10
CALL 17, 4-digit BCD to BASIC
floating point, 12-11

See also CALL 27
CALL 18, re-enable control C
break function, 12-11

See also CALL 19
CALL 19, disable control C break
function, 12-12

See also CALL 18
CALL 20, BASIC floating point to
3-digit, signed, fixed decimal
BCD, 12-12

See also CALL 10
CALL 21, BASIC floating point to
16-bit binary, 12-13

See also CALL 11
CALL 22, BASIC floating point to
4-digit signed octal, 12-13

See also CALL 12
CALL 23, BASIC floating point to
6-digit signed fixed decimal BCD,
12-14

See also CALL 13
CALL 24, BASIC floating point to
SLC 16-bit signed integer, 12-15

See also CALL 14
CALL 25, BASIC floating point to
SLC 16-bit binary, 12-16

See also CALL 15
CALL 26, BASIC floating point to
3.3-digit signed BCD, 12-17

See also CALL 39
CALL 27, BASIC floating point to
4-digit BCD, 12-17

See also CALL 17
CALL 28, undefined, 12-18
CALL 29, read/write to a
PLC/SLC from the BASIC
module internal string, 12-18
CALL 30, PRT2 port support
parameter set, 12-20

See also MODE

Index

I-6

CALL 31, display PRT2 port
parameters, 12-21
CALL 32, enable/disable
processor interrupt, 12-22
CALL 33, transfer data from
PRT1 or PRT2 to the BTR buffer,
12-23
CALl 34, transfer data from BTW
buffer to PRT1 or PRT2, 12-29
CALL 35, retrieve numeric input
character from ASCII port, 12-34

See also GET@
CALL 36, retrieve number of
characters in the PRT2 port
buffers, 12-35
CALL 37, clear PRT2 port buffers,
12-35
CALL 38, expanded ONERR
restart, 12-36

See also ONERR
CALL 39, 3.3-digit signed, fixed
decimal BCD to BASIC floating
point, 12-38

See also CALL 26
CALL 40, set the wall clock time,
12-39
CALL 41, set the wall clock date,
12-40
CALL 42, set the wall clock day
of week, 12-40
CALL 43, date/time retrieve
string, 12-41
CALL 44, date retrieve numeric,
12-41
CALL 45, time retrieve string,
12-42
CALL 46, time retrieve numeric,
12-42
CALL 47, day of week retrieve
string, 12-43
CALL 48, day of week retrieve
numeric, 12-43
CALL 49, read remote DH-485
SLC data file, 12-44

CALL 50, write to remote DH-485
SLC data file, 12-50
CALL 51, undefined, 12-58
CALL 52, date retrieve string,
12-58
CALL 53, undefined, 12-58
CALL 54, undefined, 12-58
CALL 55, undefined, 12-58
CALL 56, undefined, 12-58
CALL 57, undefined, 12-58
CALL 58, undefined, 12-58
CALL 59, undefined, 12-58
CALL 60, string repeat, 12-59
CALL 61, string append, 12-60
CALL 62, number to string
conversion, 12-61
CALL 63, string to number
conversion, 12-62
CALL 64, find a string in a string,
12-63
CALL 65, replace a string in a
string, 12-64
CALL 66, insert a string in a
string, 12-65
CALL 67, delete string from a
string, 12-66
CALL 68, determine length of
string, 12-67
CALL 69, undefined, 13-2
CALL 70, ROM to RAM program
transfer, 13-2
CALL 71, ROM/RAM to ROM
program transfer, 13-3
CALL 72, ROM/RAM return,
13-4
CALL 73, battery-backed RAM
disable, 13-5

See also JW7
CALL 74, battery-backed RAM
enable, 13-5

See also JW7
CALL 75, undefined, 13-5
CALL 76, undefined, 13-5

Index

I-7

CALL 77, protected variable
storage, 13-6

See also LD@, MTOP, ST@
CALL 78, set program port
communication rate, 13-8
CALL 79, no operation, 13-8
CALL 80, check battery condition,
13-9

See also JW7
CALL 81, user PROM check and
description, 13-10
CALL 82, check user memory
module map, 13-11
CALL 83, display DH485 port
parameters, 13-11
CALL 84, transfer DH-485
common interface file to BASIC
input buffer, 13-12
CALL 85, transfer BASIC output
buffer to DH-485 common
interface file, 13-13
CALL 86, check DH-485 interface
file remote write status, 13-14
CALL 87, check DH-485 interface
file remote read status, 13-15
CALL 88, BASIC floating point to
PLC-5 floating point, 13-16

See also CALL 89
CALL 89, PLC-5 floating point to
BASIC floating point, 13-17

See also CALL 88
CALL 90, read remote DH-485
data file to BASIC input buffer,
13-18
CALL 91, write BASIC output
buffer to remote DH-485 data file,
13-22
CALL 92, read remote DH-485
common interface file to BASIC
input buffer, 13-26
CALL 93, write output buffer to
remote DH-485 common interface
file, 13-29
CALL 94, display current PRT1
port setup, 13-32

CALL 95, number of characters in
PRT1 buffers, 13-32
CALL 96, clear PRT1 buffers,
13-33
CALL 97, enable port PRT2 DTR
signal, 13-33

See also CALL 98
CALL 98, disable port PRT2 DTR
signal, 13-34

See also CALL 97
CALL 99, reset print head pointer,
13-34
CALL 100, download and
program assembly language code
to EEPROM, 13-35
CALL 101, upload user EEPROM
code to host, 13-35
CALL 102, undefined, 13-35
CALL 103, print PRT1 transmit
buffer and pointer, 13-36
CALL 104, print PRT1 receive
buffer and pointer, 13-37
CALL 105, reset PRT1 to default
settings, 13-37
CALL 106, undefined, 13-38
CALL 107, undefined, 13-38
CALL 108, enable DF1 driver
communications, 13-38

See also JW4, CALL 113
CALL 109, print argument stack,
13-44
CALL 110, print ASCII port
output buffer and pointer, 13-45
CALL 111, print PRT2 port
receive buffer and pointer, 13-46
CALL 112, user LED control,
13-47
CALL 113, disable DF1 driver
communications, 13-47

See also JW4, CALL 108
CALL 114, transmit DF1 packet,
13-48
CALL 115, check DF1 status,
13-49

Index

I-8

CALL 116, call user defined
assembly language routine, 13-50
CALL 117, DF1 packet length,
13-51
CALL 118, PLC/SLC unsolicited
writes, 13-52
CALL 119, reset PRT2 port to
default settings, 13-56
CALL 120, clear BASIC module
I/O buffers, 13-57
CALL 121, undefined, 13-57
CALL 122, read remote DF1 PLC
data file, 13-58
CALL 123, write remote DF1
PLC data file, 13-66
CALL 124, undefined, 13-74
CALL 125, undefined, 13-74
CALL 126, undefined, 13-74
CALL 127, undefined, 13-74
call user defined assembly
language routine, CALL 116,
13-50
calls, 4-2, 12-1, 13-1

See also Chapters 12 and 13
background operations, 7-6
backplane conversion, 7-4

See also Chapter 8
block-transfer, 7-3

See also Chapter 5
calendar, 7-4
clock, 7-4
command line, 7-7, 10-22
DF1 protocol, 7-6
DH-485 communication, 7-5
execution control, 7-7
input, 7-8
interrupt support, 7-7
math, 7-4

See also Chapter 8
memory manipulation, 7-1
miscellaneous, 7-2
new, SOC-4
no operation, SOC-5
output, 7-9

port communication, 7-2
quick reference, E-1
redefined, SOC-5
setup, 7-9
status, 7-10
string, 7-5

See also Chapter 8
unsupported, SOC-5
using, 7-1

See also Chapters 12 and
13

CAN’T CONTINUE, C-3
cassette recorder, SOC-5
CBY, special function operator,
9-18
chassis addressing. See addressing
check battery condition, CALL 80,
13-9

See also JW7
check DF1 status, CALL 115,
13-49
check DH-485 interface file
remote write status, CALL 86,
13-14
check DH-485 interface file
remote read status, CALL 87,
13-15
check user memory module map,
CALL 82, 13-11
chip insertion tool, 3-7
CHR, string operator, 9-16

See also STRING, CALL 65
CIF, definition, Using-3
CLEAR, 11-2
clear BASIC module I/O buffers,
CALL 120, 13-57
clear PRT1 buffers, CALL 96,
13-33
clear PRT2 port buffers, CALL 37,
12-35
CLEARI, 11-3

See also ONTIME
CLEARS, 11-3
clock, A-2

Index

I-9

set date, CALL 41, 12-40
set day of week, CALL 42,
12-40
set time, CALL 40, 12-39

clock calls, 7-4
clock/calendar accuracy, A-12
CLOCK0, 11-4

See also ONTIME, TIME
CLOCK1, 11-5

See also ONTIME, TIME
command

BRKPNT, 6-4, 10-2
See also CONT

CONT, 10-3
Control C, 10-4

See also CALLs 18 and 19
Control Q, 10-5

See also Control S
Control S, 10-6

See also Control Q
EDIT, 10-7
ERASE, 10-8

See also PROG
LIST, 10-9
LIST#, 10-9
LIST@, 10-9
MODE, 11-20
NEW, 10-10
NULL, 10-10
PROG, 10-11
PROG1, 10-12
PROG2, 10-13
RAM, 10-15
REN, 10-16
ROM, 10-17
RROM, 10-18
RUN, 10-19
SNGLSTP, 6-4, 10-20

See also CONT
VER, 10-21
XFER, 10-21

command line calls, 7-7, 10-22
command mode, 4-1

commands, 4-1, 10-1
See also Chapter 10
quick reference, E-1

common interface file
check read status, CALL 87,
13-15
check write status, CALL 86,
13-14
read to input buffer, CALL 92,
13-26
transfer output buffer to
DH-485 CIF, CALL 85, 13-13
transfer to BASIC module input
buffer, CALL 84, 13-12
write output buffer to remote
DH-485, CALL 93, 13-29

communicating with SLC
processors, 2-3
communication cable, DH-485
network, 2-11
communication cables, ordering,
A-13
communication mode

RS-232, 2-2
RS-422, 2-2
RS-485, 2-2

communication modes, 2-2, 2-8
communication networks, A-3
communication ports, 2-1

overview, 2-1
communication rate, program port,
CALL 78, 13-8
communication rates, 2-6

cable lengths, 2-6
DH485 port, 2-6
PRT1 port, 2-6
PRT2 port, 2-6

compatibility, SOC-1
with 1746-BAS, SOC-5
with Series A, SOC-1

complex expression, 9-1
components needed for DF1
communication

dial-up modem, 2-10

Index

I-10

leased phone line, 2-10
radio link, 2-10

components needed for DH-485
communication

1747-AIC Isolated Link
Coupler, 2-11
1747-KE DH-485/RS-232C
Communication Interface
Module, 2-11
1747-PIC Interface/Converter,
2-11
1770-KF3 DH-485
Communication Interface
Module, 2-11
1784-KR DH-485 Interface
Card, 2-11

concatenation, CALL 61, 12-60
configuration jumpers, 1-3

JW1, watchdog timer, 1-4
JW2, memory module, 1-4
JW3, CPU speed, 1-5
JW4, operating mode, 1-5
JW5, backplane configuration,
1-6
JW6, PRT2 communication
rate, 1-7

See also PROG1, PROG2,
MODE

JW7, battery enable, 1-8
See also CALLs 73, 74,
80

JW8, PRT1 configuration, 1-8
See also communication
modes

JW9, PRT2 configuration, 1-8
See also communication
modes

configuration plugs, Series A,
D-1
connect peripheral devices, 1-12
console device, definition,
Using-3
constants, 9-1
CONT, 10-3

contacting Allen-Bradley for
assistance, Using-6
Control C, 10-4

See also CALLs 18 and 19
Control Q, 10-5

See also Control S
Control S, BASIC command, 10-6

See also Control Q
control stack, 8-1, 11-8, 11-9,
11-11, 11-13

See also CLEARS, C-Stack
conventions in this manual,
Using-4
conversions, numeric, 8-4
COS, trigonometric function, 9-10
CPU speed, SOC-3

JW3, 1-5
normal, 1-5
turbo, 1-5

CRC error checking, CALL 108,
13-38
creating a program, 4-2

D
DATA, 11-6

See also READ, RESTORE
Data Communication Equipment
(DCE). See DCE
data recorder, SOC-5
data storage, A-3
data tables, 5-2

input image table, 5-3
output image table, 5-2

Data Terminal Equipment (DTE).
See DTE
data type generation, A-3
data types, 8-1

send to BASIC module, 8-4
send to PLC processor, 8-4

date
retrieve numeric, CALL 44,
12-41
retrieve string

CALL 43, 12-41

Index

I-11

CALL 52, 12-58
setting, CALL 41, 12-40

date retrieve numeric, CALL 44,
12-41
date/time retrieve string, CALL
43, 12-41
day of week

retrieve numeric, CALL 48,
12-43
retrieve string, CALL 47, 12-43
set, CALL 42, 12-40

day of week retrieve numeric,
CALL 48, 12-43
day of week retrieve string, CALL
47, 12-43
DB25 female cable connector, 2-2
DBY, special function operator,
9-18
DCE, cable pinout, 2-5
DCE and DTE, overview, 2-5
debugging a program, 6-4

See also BRKPNT, SNGLSTP,
STOP

decimal conversion table, B-1
definitions, Using-3
delete string from a string, CALL
67, 12-66
deleting a program line, 6-3
determine length of string, CALL
68, 12-67
DF1, components required for,
2-10
DF1 data file, read remote, CALL
122, 13-58
DF1 driver communications,
enable, CALL 108, 13-38
DF1 protocol, SOC-2, 2-10

See also JW4, CALL 108
CALL 16, 12-10
check status, CALL 115, 13-49
components required for, A-9
configuration jumper JW4, 1-5
configurations, A-9
definition, Using-3

disable drive communications,
CALL 113. See JW4, CALL
108
enable driver communications,
CALL 108, 13-38
ONDF1, 11-22
packet length, CALL 117,
13-51
transmit packet, CALL 114,
13-48
write remote data file, CALL
123, 13-66

Df1 protocol calls, 7-6
DF1 protocol port, PRT2 port,
2-10, A-9
DH-485

common interface file, CALL
86, 13-14
definition, Using-3
network, SOC-2

DH-485 communication calls, 7-5
DH-485 interface, A-6
Dh-485 interface card, ordering,
A-13
DH-485 network

1747-AIC Isolated Link
Coupler, 2-12, A-7
1747-PIC Interface/Converter,
2-12, A-7
cable requirements, 2-11
check interface file remote read
status, 13-15
check interface file remote
write status, CALL 86, 13-14
common interface file, CALL
87, 13-15
configurations, A-7
interface card 1784-KR, 2-13
interfacing with BASIC module
and development software, 2-11
programming interface, 4-5
read remote common interface
file to BASIC input buffer,
CALL 92, 13-26

Index

I-12

read remote data file, CALL 49,
12-44
read remote data file to BASIC
input buffer, CALL 90, 13-18
serial communication link

CALL 86, 13-14
CALL 87, 13-15

transfer data to BASIC input
buffer, 13-12
write BASIC output buffer to
remote data file, CALL 91,
13-22
write output buffer to remote
common interface file, CALL
93, 13-29
write to remote data file, 12-50

Dh-485 network, transfer BASIC
output buffer to common interface
file, 13-13
DH-485 network, communication
cables, 2-11
DH-485, network, 12-53
DH485 port, SOC-2, A-2

cable pinout, 2-3
communication calls, 7-5
communication mode, 2-3
communication rates, 2-6
connecting peripherals, 1-12
display parameters, CALL 83,
13-11
electrical isolation, 2-3
network port, 2-11
operating mode, JW4, 1-5
port isolation, A-12
program port, 2-9, 4-5

communication rate,
CALL 78, 13-8

programming interface, A-6
set parameters, 11-20

See also CALL 83
diagnostic features, A-4
dial-up modem for DF1
communication, 2-10

DIM, 11-7
dimensioned variable, definition,
Using-3
dimensioned variables, 9-2
disable battery-backed RAM,
CALL 73, 13-5

See also JW7, CALL 74
disable control C break function,
CALL 19, 12-12

See also CALL 18
disable DF1 driver
communications, CALL 113,
13-47

See also CALL 108
disable port PRT2 DTR signal,
CALL 98, 13-34
disable/enable DF1 packet
interrupt, CALL 16, 12-10
disable/enable processor interrupt,
CALL 32, 12-22
disassemble module, 3-3
discrete transfers, 5-2
display current PRT1 port setup,
CALL 94, 13-32
display DH485 port parameters,
CALL 83, 13-11
display PRT2 port parameters,
CALL 31, 12-21
disposing lithium battery, 3-8
divide (/), arithmetic operator, 9-5
DIVIDE BY ZERO, C-3
DO-UNTIL, 11-8
DO-WHILE, 11-9
documentation, Using-4

Application Considerations for
Solid-State Controls (SGI-1.1),
Using-4
Automation Glossary
(ICCG-7.1), Using-4
BASIC Development Software
(1746-6.2), Using-4
comments on, Using-6

Index

I-13

DH-485/RS-232G Interface
Module (1747-NU001),
Using-4
DH, DH+, DH-485 Protocol
and Command Set Reference
Manual, Using-4
National Electrical Code,
Using-4
problems with, Using-6
Programmable Controller
Grounding and Wiring
Guidelines (1770-4.1), Using-4
Publication Index (SD499),
Using-4

download assemble language code
to EEPROM, CALL 100, 13-35
DPD selection, CALL 108, 13-38
DTE, cable pinout, 2-5
DTE and DCE, overview, 2-5
DTR signal

disable, 13-34
enable, 13-33

E
EDIT, 10-7
editing a program line, 6-1

See also EDIT
editing operations, 6-2, 10-7

See also EDIT
EEPROM, SOC-1

See also memory module
definition, Using-3

electric isolation
DH485, 2-3
PRT1, 2-2
PRT2, 2-2

electrical interface. See JW8 and
JW9
electrostatic discharge, 1-1
enable battery-backed RAM,
CALL 74, 13-5

See also JW7, CALL 73

enable DF1 driver
communications, CALL 108,
13-38

See also JW4, CALL 113
enable port PRT2 DTR signal,
CALL 97, 13-33
enable/disable DF1 packet
interrupt, CALL 16, 12-10
enable/disable processor interrupt,
CALL 32, 12-22
END, 11-10
enhanced serial port modifiers,
SOC-3, 9-17
entering a program, 4-7

See also LIST
environmental conditions, A-11
EOF, special function operator,
9-17
EPROM

See also memory module
definition, Using-3

equal to (=), relational operator,
9-9
ERASE, 10-8

See also PROG
error checking

BCC, CALL 108, 13-38
CRC, CALL 108, 13-38

error messages
from BASIC module, C-2
from CALL routines, C-4
memory support, C-5
miscellaneous, C-6
PRT2 support, C-4
string support, C-5
wall clock, C-4

error trapping
CALL 38, 12-36
ONERR, 11-23

errors, arithmetic, 9-6
See also troubleshooting,
ONERR, CALL 38

error-trapping support, SOC-2
ESD. See electrostatic discharge

Index

I-14

example block transfer BASIC
program, 5-7
example ladder logic

CALl 118, 13-56
CALL 122, 13-65
CALL 123, 13-74
CALL 32, 12-22
CALL 33, 12-28
CALL 34, 12-33
CALL 49, 12-49
CALL 50, 12-57
PLC-2 processor, 5-8
PLC-3 processor, 5-9
PLC-5 processor, 5-10, 5-11
PLC-5/250 processor, 5-12

exclusive OR, 9-8
execution control calls, 7-7
EXP, logarithmic operator, 9-13

See also **
expanded ONERR restart, CALL
38, 12-36

See also ONERR
exponentiation (**), arithmetic
operator, 9-5

See also EXP
expressions, 9-1
EXTRA IGNORED, C-3, C-5

F
find a string in a string, CALL 64,
12-63
floating-point

BASIC module, 8-9
See also CALLs 88 and 89

PLC-5, 8-9
See also CALLs 88 and 89

floating-point numbers, 8-3
FOR-TO-NEXT, 11-11
FREE, special function operator,
9-17
free-running clock, A-2
full-duplex slave mode, CALL
108, 13-38
functional operators, 9-11

ABS, 9-11
INT, 9-12
NOT, 9-11
PI, 9-12
RND, 9-12
SGN, 9-12
SQR, 9-12

G
GET, 11-12
get DF1 packet length, CALL 117,
13-51
get number of characters in PRT2
port buffers, CALL 36, 12-35
get numeric input character from
ASCII port, CALL 35, 12-34

See also GET@
GET#, 11-12
GET@, 11-12
getting started flowchart, Using-5
GOSUB, 11-13
GOTO, 11-14
greater than (>), relational
operator, 9-9
greater than or equal to (>=),
relational operator, 9-9
guard against electrostatic
discharge, 1-1

H
half-duplex slave operation,
CALL 108, 13-38
handshaking, 2-4

block-transfers, 5-2
enabling/disabling, 11-20
hardware, 2-5
modem full-duplex mode,
CALL 108, 13-42
modem half-duplex mode,
CALL 108, 13-40
modem handshaking selection,
CALL 108, 13-38
software handshaking, 2-4

hardware features, A-2

Index

I-15

hardware handshaking, 2-5, 2-8,
11-27
hardware specification, power
requirements, A-11
hardware specifications

clock/calendar accuracy, A-12
environmental conditions,
A-11
maximum communication
distances, A-12
port isolation, A-12

hardware handshaking, 11-29
hex conversion table, B-1
hierarchy of operations, 9-3
hints, programming, 4-2
how to use manual, Using-2

I
I/O chassis, 1-9

inserting module, 1-11
removing module, 3-2

IDLE, 11-14
IF-THEN-ELSE, 11-15
INCOMPLETE ROM
PROGRAM FOUND, C-6
indicator lights, 1-13, A-4, C-1
initiate single step execution, 6-4

See also CONT
INPL, 11-16

See also INPL, INPUT
INPL#, 11-16
INPL@, 11-16
INPS, 11-16

See also INPL, INPUT
INPS#, 11-16
INPS@, 11-16
INPUT, 11-17, C-5

See also INPL, INPS
input buffer

See also BTR buffer, receive
buffer
clear, CALL 120, 13-57
definition, Using-3
offsets, 5-1

See also BTR buffer
read remote common interface
file to BASIC input buffer,
CALL 92, 13-26
read remote data file to BASIC
input buffer, CALL 90, 13-18
transfer DH-485 CIF to, CALL
84, 13-12

input calls, 7-8
input image table, 5-3
INPUT#, 11-17
INPUT@, 11-17
insert a string in a string, CALL
66, 12-65
insert module into I/O chassis,
1-11
installing

BASIC module, 1-1, 1-11
battery, 3-8
memory modules, 1-2, 3-5

installing components, 3-1
INSUFFICIENT NUMBER OF
STRING CHARACTERS, C-4
INSUFFICIENT NUMBER OF
STRING CHARACTERS
ALLOCATED, C-4
INSUFFICIENT STRING SIZE,
C-5
INT, functional operator, 9-12
integer numbers, 8-3
interface/converter, ordering,
A-13
internal string, 8-2
interpreter mode, 4-1
interrupt routines, exiting with
RETI, 11-33
interrupt support calls, 7-7
interrupts

enable/disable DF1-CALL 16,
12-10
enable/disable processor, CALL
32, 12-22

INVALID BAUD RATE
ENTERED, C-6

Index

I-16

INVALID DATE/TIME PUSHED,
C-4
INVALID INPUT DATA, C-4
INVALID MTOP ADDRESS
ENTERED, C-5
INVALID NUMBER PUSHED,
C-4
INVALID VALUE PUSHED, C-4

J
JEDEC standard, memory
modules, 3-4
JW1, watchdog timer, 1-4
JW2, memory module, 1-4
JW3, CPU speed, 1-5
JW4, operating mode, 1-5
JW5, backplane configuration, 1-6
JW6, PRT2 communication rate,
1-7

See also PROG1, PROG2,
MODE

JW7, battery enable, 1-8
See also CALLs 73, 74, 80

JW8, PRT1 configuration, 1-8
JW9, PRT2 configuration, 1-8

See also communication modes

K
keying, 1-10, A-11

L
ladder logic

CALl 118, 13-56
CALL 122, 13-65
CALL 123, 13-74
CALL 32, 12-22
CALL 33, 12-28
CALL 34, 12-33
CALL 49, 12-49
CALL 50, 12-57

LD@, 11-18
See also ST@, CALL 77

leased phone lines for DF1
communication, 2-10

LED indicators, SOC-1, A-2,
A-4, C-1

reading, 1-13
See also troubleshooting

user control, CALL 112, 13-47
LEN, 10-17, 10-18

special function operator, 9-17
length of string, CALL 68, 12-67
less than (<), relational operator,
9-9
less than or equal to (<=),
relational operator, 9-9
LET, 11-19
lights, A-4, C-1

See also LED indicators
link coupler, ordering, A-13
LIST, 10-9
LIST #, 10-9
LIST @, 10-9
lithium battery condition, 13-9

See also JW7
lithium battery disposal, 3-8
LOG, logarithmic operator, 9-13
logarithmic operators, 9-13

EXP, 9-13
See also **

LOG, 9-13
logical bitwise operators, 9-7
logical operators

.AND., 9-7

.OR., 9-8

.XOR., 9-8

M
manual organization, Using-2
math calls, 7-4

See also Chapter 8
math precision, A-12
maximum communication
distances, A-12
memory modules

PROG1, 10-12
PROG2, 10-13

MEMORY ALLOCATION, C-3

Index

I-17

memory manipulation calls, 7-1
memory module

configuration JW2, 3-7
JW2, 1-4
locations on board, 3-6

memory modules, SOC-1, 3-4,
A-2, A-10

See also RAM, ROM, XFER,
PROG, PROG1, PROG2
check and description, CALL
81, 13-10
chip speed, 3-7

See also JW3
configuration jumper, 1-4
definition, Using-3
download/program assembly
language code, 13-35
ERASE, 10-8

See also PROG
installing, 1-2, 3-5
JEDEC standards, 3-4
memory map, CALL 82, 13-11
ordering, A-13
PROG, 10-11
replacing, 3-5
ROM, 10-17
SKT1, 3-6
SKT2, 3-6
upload user code to host, 13-35
with carriers, 3-5, 3-6
without carriers, 3-5, 3-6

memory organization, 5-1
memory requirements, A-10
miscellaneous calls, 7-2
MODE, 11-20
mode

command, 4-1
interpreter, 4-1
program, 4-1
run, 4-1

module keying, A-11
module location, 1-9, A-11
MTOP, 10-17, 10-18

CALL 77, 13-6
definition, Using-3
PROG1, 10-12
special function operator, 9-18

See also CALL 77
multidrop, 2-2
multiply (*), arithmetic operator,
9-5

N
negation (-), arithmetic operator,
9-6
network configurations, A-7
network port

See also DH485 port
configuration jumper JW4, 1-5
definition, Using-3
DH485 port, 2-11

NEW, 10-10
new calls, SOC-4
NEXT, 11-21

See also FOR-T0-NEXT
NO DATA, C-3
NO PROGRAM FOUND BUT
THE PROM IS NOT BLANK,
C-6
non-ASCII data. See software
handshaking
normal mode, 1-5
NOT, functional operator, 9-11
not equal to (), relational operator,
9-9
NULL, 10-10
NUMBER BYTES/STRING
EXCEED 254, C-4
number of characters in PRT1
buffers, CALL 95, 13-32
number to string conversion,
CALL 62, 12-61
numbering program lines, 4-6
numeric conversion

CALL 10, 12-6
CALL 11, 12-7
CALL 12, 12-7

Index

I-18

CALL 13, 12-8
CALL 14, 12-8
CALL 15, 12-9
CALL 17, 12-11
CALL 20, 12-12
CALL 21, 12-13
CALL 22, 12-13
CALL 23, 12-14
CALL 24, 12-15
CALL 25, 12-16
CALL 26, 12-17
CALL 27, 12-17
CALL 39, 12-38
CALL 88, 13-16
CALL 89, 13-17

numeric conversions, 8-4
numeric data types, 8-3

O
octal conversion table, B-1
ON-GOSUB, 11-24
ON-GOTO, 11-26
ONDF1, 11-22

See also CALL 16
ONERR, 11-23

See also CALL 38
ONTIME, 11-25

See also CLOCK1, TIME
operating mode, JW4, 1-5
operating modes, 2-7
operational codes

full-duplex mode, CALL 108,
13-41
half-duplex mode, CALL 108,
13-39

operators, 4-1, 9-3
See also Chapter 9
arithmetic, 9-5
bitwise, 9-7
functional, 9-11
logarithmic, 9-13
logical bitwise, 9-7
quick reference, E-1

relational, 9-9
special function, 9-17
string, 9-14
trigonometric, 9-10

operating modes
ASCII port, 2-7
DF1 protocol port, 2-7
network port, 2-7
program port, 2-7

OR, 9-8
order of operations, 9-3
output buffer

See also BTW buffer, transmit
buffer
clear, CALL 120, 13-57
definition, Using-3
offsets, 5-1

See also BTW buffer
transfer DH-485 CIF to, CALL
85, 13-13
write BASIC output buffer to
remote data file, CALL 91,
13-22

output calls, 7-9
output image table, 5-2
overflow and division by zero,
arithmetic operator, 9-6

See also ONERR, CALL 38

P
PBASE, SOC-3, Using-3

See also BASIC Development
Software
RS-232 interface, 2-9

PH1., 11-27
PH1.#, 11-27
PH1.@, 11-27
PHO., 11-27
PHO.#, 11-27
PHO.@, 11-27
PI, functional operator, 9-12
pinout

DB25, 2-2
RJ45, 2-3

Index

I-19

pinout for connectors, 2-2
PLC processor

definition, Using-3
read remote DF1 PLC data file,
CALL 122, 13-58
unsolicited write, CALL 118,
13-52
write to remote DF1 PLC data
file, CALL 123, 13-66

PLC-5 floating point, SOC-3
PLC-5 floating point to BASIC
floating point, CALL 89, 13-17

See also CALL 88
PLC-5, floating point, 8-9

See also CALLs 88 and 89
point to point, 2-2
pointer

print PRT1 receive pointer,
CALL 104, 13-37
print PRT1 transmit pointer,
CALL 103, 13-36
print PRT2 receive, CALL 111,
13-46
print PRT2 transmit, CALL
110, 13-45
reset print head pointer, CALL
99, 13-34

POP, 8-1, 11-28
See also PUSH

port communication calls, 7-2
port driver and receiver, A-11
port isolation, A-12
power on, flowchart, 10-14
power requirements, 1-2, A-11
power up, 1-12

See also PROG2
configuration jumper JW4, 1-5

PRINT, 11-29
print argument stack, CALL 109,
13-44
print head, reset pointer, CALL
99, 13-34
print PRT1 receive buffer and
pointer, CALL 104, 13-37

print PRT1 transmit buffer and
pointer, CALL 103, 13-36
print PRT2 receive buffer and
pointer, CALL 111, 13-46
print PRT2 transmit buffer and
pointer, CALL 110, 13-45
PRINT#, 11-29
PRINT@, 11-29
product features, A-1
product overview, A-1
PROG, 10-11

See also PROG1, PROG2,
MODE, CALLs 81 and 82

PROG 2, 10-13
See also JW4, PROG, PROG1,
MODE
BASIC command, 10-13

PROG1, 10-12
See also PROG, PROG2,
MODE

program assembly language code
to EEPROM, CALL 100, 13-35
program lines

maximum character number,
4-6
multiple statements, 4-6

program mode, 4-1
PROGRAM NOT FOUND, C-5
program port

See also DH485 port, PRT1
port
calls, 7-2
communication rate, 13-8
configuration jumper JW4, 1-5
definition, Using-3
DH485 port, 2-9, 4-5

See also Chapter 2
GET, 11-12
PRT1 port, 2-9, 4-3

See also Chapter 2
RS-232 interface, 4-4

See also Chapter 2
program storage, A-3
program transfer

Index

I-20

ROM to RAM, 13-2
ROM/RAM to ROM, 13-3

PROGRAMMING, C-3
programming

ASCII terminal emulator, 4-3
BASIC Development Software,
4-4
BASIC module output buffer
offsets, 5-1

See also BTW buffer
block-transfers, 5-1
calls, 4-2

See also Chapters 12 and
13

commands, 4-1
See also Chapter 10

creating, 4-2
debugging, 6-4

See also BRKPNT,
SNGLSTP, STOP

deleting a program line, 6-3
editing a program line, 6-1

See also EDIT
entering program, 4-7

See also LIST
hints, 4-2, 5-6, 8-2, 11-32,
11-38, 12-23, 12-29, 12-36,
12-44, 12-50
input buffer offsets, 5-1
instructions, 4-1
numbering lines, 4-6
operators, 4-1

See also Chapter 9
overview, 4-1
renumbering a program, 6-3

See also REN
running a program, 4-9

See also RUN
setting breakpoints, 6-4

See also CONT
single step execution, 6-4

See also CONT
statements, 4-2

See also Chapter 11

stopping a program, 4-9
See also JW4, CALLs 18
and 19

tips, 5-6, 11-38, 12-23, 12-29,
12-36, 12-44, 12-50

programming interface
ASCII terminal, A-5
BASIC Development Software,
A-6
DH-485 interface, A-6
RS-232 interface, A-6

programming interfaces, A-5
programming languages, A-3
protected variable storage, CALL
77, 13-6

See also LD@, MTOP, ST@
PRT1, program port,
communication rate, CALL 78,
13-8
PRT1 port, A-2

@ operator, 9-17
ASCII port, 2-8
cable pinout, 2-2
calls, 7-2
clear buffers, CALL 96, 13-33
communication modes, 2-2

See also JW8
communication rates, 2-6

See also PROG1, PROG2,
MODE

connecting peripherals, 1-12
electric isolation, 2-2
JW8, 1-8

See also communication
modes

number of characters in buffers,
CALL 95, 13-32
operating mode, JW4, 1-5
port isolation, A-12
print receive buffer and pointer,
CALL 104, 13-37
print transmit buffer and
pointer, CALL 103, 13-36
program port, 2-9, 4-3

Index

I-21

See also Chapter 2
programming interface, A-5,
A-6
receive buffer, 2-3

clear, CALL 96, 13-33
number of characters in,
CALL 95, 13-32
print, CALL 104, 13-37

reset default settings, CALL
105, 13-37
RS-232 Interface, 4-4

See also Chapter 2
set parameters, 11-20

See also CALL 94
setup, CALL 94, 13-32
transfer data from BTW buffer,
12-29
transfer data to BTR buffer,
CALL 33, 12-23
transmit buffer, 2-3

clear, CALL 96, 13-33
number of characters in,
CALL 95, 13-32
print, CALL 103, 13-36

PRT2 communication rate, JW6,
1-7

See also PROG1, PROG2,
MODE

PRT2 port, 2-2, A-2
See also JW9
operator, 9-17
ASCII port, 2-8
cable pinout, 2-2
calls, 7-3
clear buffers, 12-35
communication rates, 2-6

See also JW6, PROG1,
PROG2, MODE

connecting peripherals, 1-12
DF1 protocol, 2-10, A-9

CALL 16, 12-10
check status, CALL 115,
13-49

disable driver, CALL 113,
13-47
enable driver, CALL 108,
13-38
get packet length, CALL
117, 13-51
read data file, CALL 122,
13-58
transmit packet, CALL
114, 13-48
write remote DF1 PLC
data file, CALL 123,
13-66

DF1 protocol communication
calls, 7-6
disable DTR signal, CALL 98,
13-34
display parameters, CALL 31,
12-21
electric isolation, 2-2
enable DTR signal, CALL 97,
13-33
error messages, C-4
get number of characters in
buffers, CALL 36, 12-35
JW9, 1-8

See also communication
modes

operating mode, JW4, 1-5
port isolation, A-12
print receive buffer and pointer,
CALL 111, 13-46
print transmit buffer buffer and
pointer, CALL 110, 13-45
receive buffer, 2-3

clear buffer, CALL 37,
12-35
number of characters in,
CALL 36, 12-35
print, CALL 111, 13-46

reset to default settings, CALL
119, 13-56
retrieve numeric input character
from, CALL 35, 12-34

See also GET@

Index

I-22

set handshaking, CALL 30,
12-20

See also MODE
set parameters, 11-20

See also CALL 31
CALL 30, 12-20
See also MODE

transfer data from BTW buffer,
12-29
transfer data to BTR buffer,
12-23
transmit buffer, 2-3

clear buffer, CALL 37,
12-35
number of characters in,
CALL 36, 12-35
print, CALL 110, 13-45

PRT2 port support parameter set,
CALL 30, 12-20

See also MODE
publication problem report,
Using-6
purpose of manual, Using-1
PUSH, 8-1, 11-30

See also POP
Pyramid Solutions Program,
SOC-3, A-13

Q
quick reference, E-1

R
radio link for DF1
communication, 2-10
RAM, 10-15, A-2

See also ROM
available user RAM formula,
10-15
disable battery-backed, 13-5

See also JW7, CALL 72
enable battery-backed, 13-5

See also JW7
program transfer to ROM

CALL 70, 13-2

CALL 71, 13-3
return to, CALL 72, 13-4

RAM memory, SOC-1, A-10
definition, Using-3

re-enable control C break
function, CALL 18, 12-11

See also CALL 19
READ, 11-31

See also DATA, RESTORE
read block words, 1-6
read remote DF1 PLC data file,
CALL 122, 13-58
read remote DH-485 common
interface file to BASIC input
buffer, CALL 92, 13-26
read remote DH-485 data file to
BASIC input buffer, CALL 90,
13-18
read remote DH-485 SLC data
file, CALL 49, 12-44
read/write to a PLC/SLC from the
BASIC module internal string,
CALL 29, 12-18
reassemble the module, 3-11
receive, print PRT2 buffer, CALL
111, 13-46
receive buffer

See also input buffer
clear PRT1 buffer, CALL 96,
13-33
clear PRT2 buffer, CALL 37,
12-35
definition, Using-3
number of characters in
(PRT2), CALL 36, 12-35
print PRT1 buffer, CALL 104,
13-37
PRT1 and PRT2, 2-3
retrieve number of characters
(PRT1), CALL 95, 13-32
software handshaking, 2-4

redefined calls, SOC-5
related products, A-13
related publications, Using-4

Index

I-23

relational expressions, 9-1
relational operator, 9-9

equal to (=), 9-9
greater than (>), 9-9
greater than or equal to (>=),
9-9
less than (<), 9-9
less than or equal to (< =), 9-9
not equal to (), 9-9

relational operators, 9-9
REM, 11-32
remove module from I/O chassis,
3-2
REN, 10-16
renumbering a program, 6-3

See also REN
replace a string in a string, CALL
65, 12-64
replacing

battery, 3-8
memory modules, 3-5

replacing components, 3-1
reset module, CALL 0, 12-2
reset print head pointer, CALL 99,
13-34
reset PRT1 to default settings,
CALL 105, 13-37
reset PRT2 port to default settings,
CALL 119, 13-56
reset switch, SOC-3, 1-12, 12-2,
A-2

See also CALL 0
RESTORE, 11-32

See also DATA, READ
RETI, 11-33
retrieve number of characters in
PRT2 port buffers, CALL 36,
12-35
retrieve numeric input character
from ASCII port, CALL 35, 12-34

See also GET@
RETURN, 11-34

See also GOSUB

return to ROM/RAM, CALL 72,
13-4
RJ45 cable connector,
1747-C10,-C11, 2-3
RND, functional operator, 9-12
ROM, 10-17

See also RAM, RROM, XFER,
CALLs 70, 71, 72

ROM memory, definition, Using-3
ROM to RAM program transfer,
CALL 70, 13-2
ROM/RAM return, CALL 72,
13-4
ROM/RAM to ROM program
transfer, CALL 71, 13-3
RROM, 10-18

See also RAM, ROM, XFER,
CALLs 70, 71, 72

RS-232, 2-2
RS-232/423, definition, Using-3
RS-422, definition, Using-3
RS-485, definition, Using-3
RS-232 interface, 2-9
RS-232 network, 12-24
RS-422 network, 12-24
RS-485 interface, 2-9
RS-485 network, 12-24
RS-232 interface, 4-4, A-6
RS-422, 2-2
RS-485, 2-2
RUN, 10-19

See also Control C
run mode, 4-1
running a program, 4-9

See also RUN

S
SA/SB data recorder, SOC-5
sample block-transfer BASIC
program, 5-7
sample ladder logic

CALl 118, 13-56
CALL 122, 13-65
CALL 123, 13-74

Index

I-24

CALL 32, 12-22
CALL 33, 12-28
CALL 34, 12-33
CALL 49, 12-49
CALL 50, 12-57
PLC-2 processor, 5-8
PLC-3 processor, 5-9
PLC-5 processor, 5-10, 5-11
PLC-5/250 processor, 5-12

SCADA, definition, Using-3
scalar variable, definition, Using-3
scalar variables, 9-2
serial ports, SOC-2, 2-1

overview, 2-1
Series A, configuration plug
settings, D-1
set block-transfer-write length,
CALL 4, 12-4
set block-transfer-read length,
CALL 5, 12-4
set breakpoints, 6-4

See also CONT
set program port communication
rate, CALL 78, 13-8
set wall clock date, CALL 41,
12-40
set wall clock day of week, CALL
42, 12-40
set wall clock time, CALL 38,
12-39
setting, configuration jumpers, 1-3
setup calls, 7-9
SGN, functional operator, 9-12
simple expression, 9-1
SIN, trigonometric operator, 9-10
SLC 16-bit binary, 8-5

See also CALLs 14 and 24
SLC 16-bit signed integer, 8-4

See also CALLs 14 and 24
SLC 16-bit signed integer to
BASIC floating point, CALL 14,
12-8

See also CALL 24
SLC 16-bit unsigned integer, 8-5

See also CALLs 15 and 25
SLC 16-bit unsigned integer to
BASIC floating point, CALL 15,
12-9

See also CALL 25
SLC 500, definition, Using-3
SLC processor

read remote data file, CALL 49,
12-44
read/write to from BASIC
module internal string, CALL
29, 12-18
unsolicited write, CALL 118,
13-52
write to remote data file, CALL
50, 12-50

SLC processors, communication
with, 2-3
SNGLSTP, 10-20

BASIC command, 6-4
See also CONT

software features, A-3
software handshaking, 2-4, 2-8,
11-27, 11-29
special function operators, 9-17

CBY, 9-18
DBY, 9-18
EOF, 9-17
FREE, 9-17
LEN, 9-17
MTOP, 9-18

See also CALL 77
TIME, 9-19

See also CLOCK1,
ONTIME

XBY, 9-19
specifications

clock/calendar accuracy, A-12
communication distances,
A-12
environmental, A-11
port driver and receiver, A-11
port isolation, A-12
power requirements, A-11

Index

I-25

SQR, functional operator, 9-12
ST@, 11-35

See also LD@, CALL 77
statement, IDLE, 11-14
statements, 4-2, 11-1

See also Chapter 11
CLEAR, 11-2
CLEARI, 11-3
CLEARS, 11-3
CLOCK0, 11-4
CLOCK1, 11-5
DATA, 11-6
DIM, 11-7
DO-UNTIL, 11-8
DO-WHILE, 11-9
END, 11-10
FOR-TO-(STEP)-NEXT, 11-11
GET, 11-12
GET#, 11-12
GET@, 11-12
GOSUB, 11-13
GOTO, 11-14
IF-THEN-ELSE, 11-15
INPL, 11-16
INPL#, 11-16
INPL@, 11-16
INPS, 11-16
INPS@, 11-16
INPUT, 11-17
INPUT#, 11-17
INPUT@, 11-17
LD@, 11-18
LET, 11-19
NEXT, 11-21
ON-GOSUB, 11-24
ONDF1, 11-22
ONERR, 11-23
ON-GOTO, 11-26
ONTIME, 11-25
PH0., 11-27
PH0#., 11-27
PH0@., 11-27
PH1., 11-27

PH1#., 11-27
PH1@., 11-27
POP, 11-28
PRINT, 11-29
PRINT#, 11-29
PRINT@, 11-29
PUSH, 11-30
quick reference, E-1
READ, 11-31
RESTORE, 11-32
RETI, 11-33
RETURN, 11-34
ST@, 11-35
STOP, 6-4, 11-36

See also CONT
STRING, 11-37
using, 7-1

See also Chapter 11
status

DF1 status, CALL 115, 13-49
DH-485 remote read, CALL 87,
13-15
DH-485 remote write, CALL
86, 13-14

status calls, 7-10
STOP, 11-36

execution control and interrupt
support function, 6-4

See also CONT
stopping a program, 4-9

See also JW4, CALLs 18 and
19

STRING, 11-37
string

append, CALL 61, 12-60
conversion from number,
CALL 62, 12-61
conversion to number, CALL
63, 12-62
delete a string from a string,
CALL 67, 12-66
determine length of, CALL 68,
12-67
error messages, C-5

Index

I-26

find a string in a string, CALL
64, 12-63
insert a string in a string, CALL
66, 12-65
repeat string, CALL 60, 12-59
replace a string in a string,
CALL 65, 12-64

STRING # NOT ALLOCATED,
C-4
string calls, 7-5

See also Chapter 8
string data types, 8-2
string operators, 9-14

ASC, 9-14
See also STRING

CHR, 9-16
See also STRING, CALL
65

string to number conversion,
CALL 63, 12-62
subtract (-), arithmetic operator,
9-5
summary of changes, SOC-1
support information, Using-6
synchronous block-transfer,
PLC-5 processor, 5-11
synchronous block-transfers, 5-3
system subroutines, 4-2

See also Chapters 12 and 13

T
TAN, trigonometric operator, 9-10
terms, Using-3
TIME, special function operator,
9-19

See also CLOCK1, ONTIME
time

retrieve numeric, CALL 46,
12-42
retrieve string

CALL 43, 12-41
CALL 45, 12-42

set, CALL 40, 12-39

time retrieve numeric, CALL 46,
12-42
time retrieve string, CALL 45,
12-42
timed-block-transfer-read buffer,
CALL 2, 12-2
timed-block-transfer-write buffer,
CALL 3, 12-3
tips, programming, 4-2
transfer BASIC output buffer to
DH-485 Common Interface File,
CALL 85, 13-13
transfer data from BTW buffer to
PRT1 or PRT2, CALL 34, 12-29
transfer data from PRT1 or PRT2
to BTR buffer, CALL 33, 12-23
transfer DH-485 common
interface file to BASIC input
buffer, CALL 84, 13-12
transmit buffer

See also output buffer
clear PRT1 buffer, CALL 96,
13-33
clear PRT2 buffer, CALL 37,
12-35
definition, Using-3
number of characters in
(PRT2), CALL 36, 12-35
print PRT1 buffer, CALL 103,
13-36
print PRT2 buffer, CALL 110,
13-45
PRT1 and PRT2, 2-3
retrieve number of characters
(PRT1), CALL 95, 13-32
software handshaking, 2-4

transmit DF1 packet, CALL 114,
13-48
trigonometric operators, 9-10

ATN, 9-11
COS, 9-10
SIN, 9-10
TAN, 9-10

troubleshooting, C-1

Index

I-27

contacting Allen-Bradley,
Using-6
error messages from BASIC,
C-2
error messages from CALL
routines, C-4
LED indicators, C-1
memory support error
messages, C-5
miscellaneous error messages,
C-6
PRT2 error messages, C-4
string error messages, C-5
wall clock error messages, C-4

truth table, bitwise operations, 9-7
turbo mode, 1-5
turbo speed, SOC-3

U
UART, software handshaking, 2-4
unpacking BASIC module, 1-2
unsupported CALLs, SOC-5
upload user EEPROM code to
host, CALL 101, 13-35
user LED control, CALL 112,
13-47
user memory module map, 13-11
user PROM check and description,
CALL 81, 13-10
using the manual, Using-2
UVPROM

See also memory module
definition, Using-3

V
variables

arrayed, 9-2
dimensioned, 9-2
in general, 9-2
name of, 9-2
protected, CALL 77, 13-6

See also LD@, MTOP,
ST@

scalar, 9-2
VER, 10-21

W
wall clock, A-2

set date, CALL 41, 12-40
set day of week, CALL 42,
12-40
set time, CALL 40, 12-39

warnings, guarding against ESD,
1-1, 3-1
watchdog timer, JW1, 1-4
who should use this manual,
Using-1
write BASIC output buffer to
remote DH-485 data file, CALL
91, 13-22
write block words, 1-6
write output buffer to remote
DH-485 common interface file,
CALL 93, 13-29
write remote DF1 PLC data file,
CALL 123, 13-66
write to remote DH-485 SLC data
file, CALL 50, 12-50
write/read to a PLC/SLC from the
BASIC module internal string,
CALL 29, 12-18

X
XBY, special function operator,
9-19
XFER, 10-21

See also PROG, PROG1,
PROG2, RAM, ROM

XOFF, 2-4, 2-8, 10-6, 11-27,
11-29
XON, 2-4, 2-8, 10-6, 11-27, 11-29
XOR, 9-8

Index

I-28

PLC, PLC-2, PLC-3, PLC-5 are registered trademarks of the Allen-Bradley Company, Inc.

PLC-5/250, SLC, SLC 500 are a trademarks of the Allen-Bradley Company, Inc.

Intel is a trademark of the Intel Corporation.

Allen-Bradley
Publication Problem Report

If you find a problem with our documentation, please complete and return this form.

Pub. Name

Cat. No. Pub. No. Pub. Date Part No.

Check Problem(s) Type: Describe Problem(s): Internal Use Only

procedure/step

example

explanation

illustration

guideline

other

definition

feature

info in manual

(accessibility)

info not in
manual

text illustrationTechnical Accuracy

Completeness

What information is missing?

Clarity

Sequence

What is not in the right order?

What is unclear?

Other Comments

Use back for more comments.

Your Name Location/Phone

Return to: Marketing Communications, Rockwell Automation, 1 Allen–Bradley Drive, Mayfield Hts., OH 44124 Phone: (440)646-3176
FAX: (440)646-4320

Publication ICCG-5.21-May 1990 PN 955107-82

BASIC Module User Manual

1771-DB/B 955127-97May 19981771-6.5.113

PLEASE FASTEN HERE (DO NOT STAPLE)

Other Comments

PLEASE FOLD HERE

PL
EA

SE
 R

EM
O

VE

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL
First Class Mail Permit No. 18235 Cleveland, OH

POSTAGE WILL BE PAID BY
ADDRESSEE

1 ALLEN BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

32

With major offices worldwide.
Algeria • Argentina • Australia • Austria • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech
Republic • Denmark • Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India •
Indonesia • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • New Zealand • Norway • Oman • Pakistan • Peru • Philippines
• Poland • Portugal • Puerto Rico • Qatar • Romania • Russia–CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Switzerland •
Taiwan • Thailand • The Netherlands • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

World Headquarters, Allen-Bradley, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Allen-Bradley has been helping its customers improve productivity and quality for 90 years.
A-B designs, manufactures and supports a broad range of control and automation products
worldwide. They include logic processors, power and motion control devices, man-machine
interfaces and sensors. Allen-Bradley is a subsidiary of Rockwell International, one of the
world’s leading technology companies.

Publication 1771-6.5.113 May 1998
Supersedes Publication 1771-6.5.113 November 1994

PN 955127-97
Copyright 1998 Allen-Bradley Company, Inc. Printed in USA

	1771-6.5.113, BASIC Module Series B, User Manual
	Important User Information
	Preface A - Summary of Changes
	What’s in This Preface?
	1771-DB Series A and Series B Compatibility
	1771-DB Series B and 1746- BAS Compatibility
	Changes to the Manual Since the Last Printing

	Preface B - Using This Manual
	What’s in This Preface?
	Purpose of This Manual
	Who Should Use This Manual
	How To Use This Manual
	Terms and Abbreviations
	Conventions
	Related Publications
	Getting Started
	Installing the BASIC Module
	Using the Communication Ports
	Installing and Replacing Components
	Programming the BASIC Module
	Programming Block- Transfers
	Editing and Debugging a BASIC Program
	Using BASIC Module Statements
	Data Types
	Expressions, Variables and Operators
	Commands
	Statements
	Call Routines 0 - 68
	Call Routines 69-127
	Product Overview
	Conversion Table
	Troubleshooting
	Series A Configuration Plugs
	Quick Reference

	Table of Contents
	1 - Installing the BASIC Module
	What’s in This Chapter?
	Guard Against Electrostatic Damage
	Unpack the Module
	Install Memory Module
	Connect Peripheral Devices
	Power up the Module
	Reset the Module
	Read the Indicator Lights
	What’s Next?

	2 - Using the Communication Ports
	What’s in This Chapter?
	Communication Ports Overview
	Communication Modes
	Handshaking
	Communication Rates
	Operating Modes
	What’s Next?

	3 - Installing and Replacing Components
	What’s in This Chapter?
	Before You Begin
	Remove the BASIC Module from the I/ O Chassis
	Disassemble the BASIC Module
	Install Optional Memory Module
	Install the Battery
	Reassemble the BASIC Module
	What’s Next?

	4 - Programming the BASIC Module
	What’s in This Chapter?
	Programming Instructions
	Create a Program
	Number Program Lines
	Enter a Program
	What’s Next?

	5 - Programming Block-Transfers
	What’s in This Chapter?
	BASIC Module Memory Organization
	Block-Transfer Buffers
	Block-Transfers and the BASIC Module
	What’s Next?

	6 - Editing and Debugging a BASIC Program
	What’s in This Chapter?
	Edit a Program Line
	Delete a Program Line
	Renumber a Program
	Debug a Program
	What’s Next?

	7 - Using BASIC Module Statements
	What’s in This Chapter?
	Memory and Operation Calls
	Port Communication Calls
	Block-Transfer Support Calls
	Number Conversion Calls
	Clock/Calendar Calls
	String Calls
	DH-485 Communication
	DF1 Protocol Communication
	Background Operations
	Command Line Calls
	Execution Control and Interrupt Support Calls
	Input Calls
	Output Calls
	Setup Calls
	Status Calls
	What’s Next?

	8 - Data Types
	What’s in This Chapter?
	Argument Stack
	Control Stack
	String Data Types
	Numeric Data Types
	Backplane Conversion Data Types
	What’s Next?

	9 - Expressions, Variables and Operators
	What’s in This Chapter?
	Expressions
	Relational Expressions
	Constants
	Relational Expressions
	Constants
	Variables
	Order of Operations
	Arithmetic Operators
	Bitwise Operators
	Relational Operators
	Trigonometric Operators
	Functional Operators
	Logarithmic Operators
	String Operators
	Special Function Operators
	What’s Next?

	10 - Commands
	What’s in This Chapter?
	BRKPNT
	CONT
	CTRL-C
	CTRL-Q
	CTRL-S
	EDIT
	ERASE
	LIST
	NEW
	NULL
	PROG
	PROG1
	PROG2
	RAM
	REN
	ROM
	RROM
	RUN
	SNGLSTP
	VER
	XFER
	Command Line Calls
	What’s Next?

	11 - Statements
	What’s in This Chapter?
	CLEAR
	CLEARI
	CLEARS
	CLOCK0
	CLOCK1
	DATA
	DIM
	DO-UNTIL
	DO-WHILE
	END
	FOR-TO-(STEP)-NEXT
	GET
	GOSUB
	GOTO
	IDLE
	IF-THEN-ELSE
	INPL
	INPUT
	LD@
	LET
	MODE
	NEXT
	ONDF1
	ONERR
	ON-GOSUB
	ONTIME
	ON-GOTO
	PH0. and PH1.
	POP
	PRINT
	PUSH
	READ
	REM
	RESTORE
	RETI
	RETURN
	ST@
	STOP
	STRING
	What’s Next?

	12 - Call Routines 0 – 68
	What’s in This Chapter?
	CALL 0: Reset Module
	CALL 1: No Operation
	CALL 2: Timed Block-Transfer- Read Buffer
	CALL 3: Timed Block-Transfer- Write Buffer
	CALL 4: Set Block-Transfer- Write Length
	CALL 5: Set Block-Transfer- Read Length
	CALL 6: Block-Transfer-Write Buffer
	CALL 7: Block-Transfer-Read Buffer
	CALL 8: Disable Interrupts (No Operation)
	CALL 9: Enable Interrupts (No Operation)
	CALL 10: 3- Digit Signed, Fixed Decimal BCD to BASIC Floating Point
	CALL 11: 16-Bit Binary to BASIC Floating Point
	CALL 12: 4- Digit Signed Octal to BASIC Floating Point
	CALL 13: 6- Digit Signed, Fixed Decimal BCD to BASIC Floating Point
	CALL 14: SLC 16- Bit Signed Integer to BASIC Floating Point
	CALL 15: SLC 16- Bit Unsigned Integer to BASIC Floating Point
	CALL 16: Enable/Disable DF1 Packet Interrupt
	CALL 17: 4-Digit BCD to BASIC Floating Point
	CALL 18: Re-Enable Control C Break Function
	CALL 19: Disable the Control C Break Function
	CALL 20: BASIC Floating Point to 3- Digit, Signed, Fixed Decimal BCD
	CALL 21: BASIC Floating Point to 16- Bit Binary
	CALL 22: BASIC Floating Point to 4- Digit, Signed Octal
	CALL 23: BASIC Floating Point to 6- Digit, Signed, Fixed Decimal BCD
	CALL 24: BASIC Floating Point to SLC 16- Bit Signed Integer
	CALL 25: BASIC Floating-Point to SLC 16- Bit Binary
	CALL 26: BASIC Floating Point to 3.3- Digit Signed BCD
	CALL 27: BASIC Floating Point to 4- Digit BCD
	CALL 28
	CALL 29: Read/Write to a PLC/ SLC Processor from the BASIC Module Internal String
	CALL 30: PRT2 Port Support Parameter Set
	CALL 31: Display PRT2 Port Parameters
	CALL 32: Enable/Disable Processor Interrupt
	CALL 34: Transfer Data from the BTW buffer to PRT1 or PRT2
	CALL 35: Retrieve Numeric Input Character from PRT2 Port
	CALL 36: Get the Number of Characters in the PRT2 Port Buffer
	CALL 37: Clear the PRT2 Port Buffers
	CALL 38: Expanded ONERR Restart
	CALL 39 : 3.3-Digit Signed, BCD to BASIC Floating
	Point
	CALL 40: Set the Wall Clock Time (Hour, Minute, Second)
	CALL 41: Set Wall Clock Date (Day, Month, Year)
	CALL 42: Set Wall Clock Day of Week
	CALL 43: Retrieve Date/ Time String
	CALL 44: Retrieve Date Numeric (Day, Month, Year)
	CALL 45: Retrieve Time String
	CALL 46: Retrieve Time Numeric
	CALL 47: Retrieve Day of Week String
	CALL 48: Retrieve Day of Week Numeric
	CALL 49: Read Remote DH- 485 SLC Data File
	CALL 50: Write to Remote DH- 485 SLC Data
	CALL 51
	CALL 52: Retrieve Date String
	CALL 53 – 59
	CALL 60: String Repeat
	CALL 61: String Append (Concatenation)
	CALL 62: Number to String Conversion
	CALL 63: String to Number Conversion
	CALL 64: Find a String in a String
	CALL 65: Replace a String in a String
	CALL 66: Insert String in a String
	CALL 67: Delete String from a String
	CALL 68: Determine Length of a String
	What’s Next?

	13 - Call Routines 69–127
	CALL 69
	CALL 70: ROM to RAM Program Transfer
	CALL 71: ROM/RAM to ROM Program Transfer
	CALL 72: RAM/ROM Return
	CALL 73: Battery-Backed RAM Disable
	CALL 74: Battery-Backed RAM Enable
	CALL 75 – 76
	CALL 77: Protected Variable Storage
	CALL 78: Set Program Port Communication Rate
	CALL 79: Set the Active LED Blinking State (No Operation)
	CALL 80: Check Battery Condition
	CALL 82: Check User Memory Module Map
	CALL 83: Display DH485 Port Parameters
	CALL 84: Transfer DH-485 Common Interface File to BASIC Input Buffer
	CALL 85: Transfer BASIC Output Buffer to DH- 485 Common Interface File
	CALL 86: Check DH-485 Interface File Remote Write Status
	CALL 87: Check DH-485 Interface File Remote Read Status
	CALL 88: BASIC Floating Point to PLC- 5 Floating Point
	CALL 89: PLC-5 Floating Point to BASIC Floating Point
	CALL 90: Read Remote DH- 485 Data File to BASIC Input Buffer
	CALL 91: Write BASIC Output Buffer to Remote DH- 485 Data File
	CALL 92: Read Remote DH- 485 Common Interface File to BASIC Input Buffer
	CALL 93: Write Output Buffer to Remote DH- 485 Common Interface File
	CALL 94: Display Current PRT1 Port Setup
	CALL 95: Get Number of Characters in PRT1 Buffers
	CALL 96: Clear PRT1 Receive/ Transmit Buffers
	CALL 97: Enable Port PRT2 DTR Signal
	CALL 98: Disable Port PRT2 DTR Signal
	CALL 99: Reset Print Head Pointer
	CALL 100: Download and Program Assembly Language Code to EEPROM
	CALL 101: Upload User (E) EPROM Code to Host
	CALL 102
	CALL 103: Print PRT1 Transmit Buffer and Pointer
	CALL 104: Print PRT1 Receive Buffer and Pointer
	CALL 105: Reset PRT1 to Default Settings
	CALL 106 – 107
	CALL 108: Enable DF1 Driver Communications
	CALL 109: Print the Argument Stack
	CALL 110: Print the PRT2 Port Transmit Buffer and Pointer
	CALL 111: Print the PRT2 Port Receive Buffer and Pointer
	CALL 112: User LED Control
	CALL 113: Disable DF1 Driver Communications
	CALL 114: Transmit DF1 Packet
	CALL 115: Check DF1 Status
	CALL 116: Call User Defined Assembly Language Routine
	CALL 117: Get DF1 Packet Length
	CALL 118: PLC/SLC Unsolicited Writes
	CALL 119: Reset the PRT2 Port to Default Settings
	CALL 120: Clear BASIC Module I/ O Buffers
	CALL 121
	CALL 122: Read Remote DF1 PLC Data File
	CALL 123: Write to Remote DF1 PLC Data File
	CALL 124–127

	A - Product Overview
	What’s in This Appendix?
	Features
	Programming Interfaces
	Network Configurations
	Memory Requirements
	Specifications
	Related Products
	What’s in This Appendix?
	Network Configurations
	Memory Requirements

	B - Conversion Table
	What’s in This Appendix?

	C - Troubleshooting
	What’s in This Appendix?
	Interpret the Indicator Lights
	Error Messages from BASIC
	Error Messages from CALL Routines

	D - Series A Configuration Plugs
	What’s in This Appendix?
	Configuration Plugs

	E - Quick Reference
	What’s in This Appendix?

	Index
	Publication Problem Report
	Business Reply Card
	Back Cover

